108 research outputs found

    Reduction of Oscillations in Hydraulically Actuated Knuckle Boom Cranes

    Get PDF
    Doktorgradsavhandling ved Universitetet i Agder, Institutt for ingeniørvitenskap, 2016A knuckle boom crane is characterized by being a versatile machine that during operation experiences large load variations caused by the changes in position and payload. Common uses are as a mobile loader crane mounted on trucks and in offshore applications. Since their introduction the use of counterbalance valves (CBV) have been the de facto standard on load-carrying hydraulically actuated applications like the knuckle boom crane. It offers a simple and practical solution to one of the issues of mobile cranes: Controlling the load safely when lowering. By law (e.g. European Standard) the hydraulic circuit of load-carrying applications is required to contain a load holding protection device. The classical way of actuating such a crane is to use a circuit containing a pressure compensator valve and a directional control valve (DCV) in series with a CBV. This circuit is referred to as the base circuit. It is well known that this combination of valve components tends to introduce instability in the base circuit. This is mainly a problem when the controlled actuator is subjected to a negative load, because this will require the CBV to throttle the return flow. The instability presents itself as pressure oscillations in the hydraulic circuit which cause the mechanical structure to oscillate. The consequence of the oscillations is a decreased accuracy of the boom motion which create a safety risk, reduces productivity and introduces an undesirable extra fatigue load. The objective of this project was to investigate the oscillations created in the hydraulic circuit of knuckle boom cranes and reduce their severity. The effort has mainly been split in two: First, was looked into existing solutions with the focus on the ones not requiring control systems to function. This was done with reliability and robustness in mind. The investigation identified the pressure control valve (PCV) as the best commercially available solution. The use of a PCV to control the inlet flow in crane applications was rather uncharted territory. The valve, a DCV with a pressure control spool manufactured by Danfoss, has been investigated both theoretically and experimentally. A linear stability analysis has been performed with the Routh-Hurwitz stability criterion. This analysis of the valve used together with a hydraulically actuated experimental setup indicates that the combination is stable in all situations. The use of the pressure control spool in the DCV is a simple and robust solution to the stability problem of the base circuit. Not related to the PCV’s ability to reduce the oscillations the use of it in knuckle boom cranes, however, comes with certain drawbacks. The drawbacks include a load dependent dead band and a load dependent inlet flow. In order to achieve similar behavior as the normal pressure compensated DCV a closed loop control system is required. These issues are addressed in this project, where control schemes are proposed to handle them. In the second part the perspective of the search was broadened to include solutions using control systems. This has lead to the development of a novel, patent pending, concept that significantly reduces the oscillations of the base circuit. It introduces a secondary circuit where a low-pass filtered value of the load pressure is generated and fed back to the compensator of the flow supply valve. The work has demonstrated a significant improvement of stability obtained for a system with the novel concept implemented both theoretically and experimentally. The stability has been investigated both using a linear and a nonlinear model of a hydraulically actuated experimental setup. The presented novel concept circuit has the same steady state characteristics as the base circuit but without the corresponding oscillatory nature. Because the main spool of the DCV is not used for stabilising the system, the novel concept can be combined with any feedback control strategy. In this project, the novel concept is presented with linear actuators only. However,its use covers circuits with rotational actuators and CBV’s as well. The base circuit is used as a reference for comparison. Therefore, the stability of the base circuit is also investigated with a linear model

    Volume 2 – Conference: Wednesday, March 9

    Get PDF
    10. Internationales Fluidtechnisches Kolloquium:Group 1 | 2: Novel System Structures Group 3 | 5: Pumps Group 4: Thermal Behaviour Group 6: Industrial Hydraulic

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Application of reduced order MCS control in the electrohydraulic servo field.

    Get PDF
    corecore