48 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сигналов Π² Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСмах ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ зондирования Π΄ΠΎΠ½Π½ΠΎΠΉ повСрхности

    Get PDF
    The paper deals with the processing of hydroacoustic data recorded with help of hydroacoustic research complexes. Particular attention to classic and interferometric sonars is paid. In accordance to the regulatory documentation, the minimum permissible measurement errors for the formation of bottom surface maps for various economic sectors are determined. As one of the important problems affecting the effectiveness of survey work with sonar complexes, the authors determine the problem of primary data compression, which, as a rule, leads to information loss without the possibility of its recovery. These drawbacks of the methods of primary information compression-recovery and processing of hydroacoustic data used in complexes reduce the overall effectiveness of the complexes usage both with the use of sidescan sonar and with the use of an interferometric side-scan sonar. In the framework of a numerical experiment, it has been shown that the use of chirp signals as probing pulses makes it possible to effectively apply the complex in the survey sonar mode. The results of the numerical experiment for estimating the spatial position of the object at the bottom of the sonar images using the phase difference information of the received signals using an interferometric sonar are presented. Based on the results of the experiment, the requirements for recording quality of reflected signals of various types in interferometric side-scan sonar are determined. A method of resolving the reflected (with partial overlap and overlay) hydroacoustic tones, based on the method of dividing the spectra is proposed by the authors. To improve the efficiency of the chirp signal processing, the authors suggest to improve the accuracy of the detection of the signal detection time due to the phase correction calculated through the slope of the frequency change rate of the chirp signal.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ гидроакустичСских Π΄Π°Π½Π½Ρ‹Ρ…, рСгистрируСмых с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гидроакустичСских ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ… комплСксов. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ ΠΎΠ±Π·ΠΎΡ€Π½Ρ‹ΠΌ ΠΈ интСрфСромСтричСским Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°ΠΌ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ исслСдования, ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ основныС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, достигнутыС российскими ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π°ΠΌΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΎΠ²-исслСдоватСлСй. Π’ соотвСтствии с Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ минимально допустимыС ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ°Ρ€Ρ‚ Π΄ΠΎΠ½Π½ΠΎΠΉ повСрхности для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… хозяйствСнных отраслСй. Π’ качСствС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ провСдСния ΠΎΠ±Π·ΠΎΡ€Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… комплСксов Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ опрСдСляСтся ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° сТатия ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, которая, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΡ‚Π΅Ρ€Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π±Π΅Π· возмоТности Π΅Π΅ восстановлСния. Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ нСдостатки примСняСмых Π² комплСксах ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² сТатия-восстановлСния ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ гидроакустичСских Π΄Π°Π½Π½Ρ‹Ρ… ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ ΠΎΠ±Ρ‰ΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния комплСксов ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ использовании ΠΎΠ±Π·ΠΎΡ€Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ использовании интСрфСромСтричСского Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π°. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ указанная Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Π° ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈ использовании Π² качСствС Π·ΠΎΠ½Π΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² простых Ρ‚ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… сигналов. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… числСнного экспСримСнта ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ использованиС Π² качСствС Π·ΠΎΠ½Π΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² сигналов с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ-частотной модуляциСй позволяСт достаточно эффСктивно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ комплСкс Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ±Π·ΠΎΡ€Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного экспСримСнта для ΠΎΡ†Π΅Π½ΠΊΠΈ пространствСнного полоТСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° Π½Π° Π΄Π½Π΅ ΠΏΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ изобраТСниям с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ Ρ€Π°Π·Π½ΠΈΡ†Π΅ Ρ„Π°Π· ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡ‹Ρ… сигналов ΠΏΡ€ΠΈ использовании интСрфСромСтричСского Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°. На основании Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² экспСримСнта ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ трСбования для качСства рСгистрации ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… сигналов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² интСрфСромСтричСских Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°Ρ… Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π°. Авторами ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… (с частичным ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ ΠΈ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ) гидроакустичСских Ρ‚ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… сигналов, основанный Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ дСлСния спСктров. Для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ сигналов с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ-частотной модуляциСй Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ прСдлагаСтся ΡƒΠ»ΡƒΡ‡ΡˆΠ°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ опрСдСлСния ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° обнаруТСния сигнала Π·Π° счСт ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠΎ Ρ„Π°Π·Π΅, рассчитанной Ρ‡Π΅Ρ€Π΅Π· Π½Π°ΠΊΠ»ΠΎΠ½ скорости измСнСния частоты ΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сигнала

    3D reconstruction and object recognition from 2D SONAR data

    Get PDF
    Accurate and meaningful representations of the environment are required for autonomy in underwater applications. Thanks to favourable propagation properties in water, acoustic sensors are commonly preferred to video cameras and lasers but do not provide direct 3D information. This thesis addresses the 3D reconstruction of underwater scenes from 2D imaging SONAR data as well as the recognition of objects of interest in the reconstructed scene. We present two 3D reconstruction methods and two model-based object recognition methods. We evaluate our algorithms on multiple scenarios including data gathered by an AUV. We show the ability to reconstruct underwater environments at centimetre-level accuracy using 2D SONARs of any aperture. We demonstrate the recognition of structures of interest on a medium-sized oil-field type environment providing accurate yet low memory footprint semantic world models. We conclude that accurate 3D semantic representations of partially-structured marine environments can be obtained from commonly embedded 2D SONARs, enabling online world modelling, relocalisation and model-based applications

    Embodied neuromorphic intelligence

    Full text link
    The design of robots that interact autonomously with the environment and exhibit complex behaviours is an open challenge that can benefit from understanding what makes living beings fit to act in the world. Neuromorphic engineering studies neural computational principles to develop technologies that can provide a computing substrate for building compact and low-power processing systems. We discuss why endowing robots with neuromorphic technologies – from perception to motor control – represents a promising approach for the creation of robots which can seamlessly integrate in society. We present initial attempts in this direction, highlight open challenges, and propose actions required to overcome current limitations

    The perceptual flow of phonetic feature processing

    Get PDF

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    MenciΓ³n Internacional en el tΓ­tulo de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en IngenierΓ­a TelemΓ‘tica por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio FernΓ‘ndez Anta.- Vocal: Santiago Zazo Bell

    Cross-spectral synergy and consonant identification (A)

    Get PDF
    corecore