2,476 research outputs found

    On Provably Correct Decision-Making for Automated Driving

    Get PDF
    The introduction of driving automation in road vehicles can potentially reduce road traffic crashes and significantly improve road safety. Automation in road vehicles also brings several other benefits such as the possibility to provide independent mobility for people who cannot and/or should not drive. Many different hardware and software components (e.g. sensing, decision-making, actuation, and control) interact to solve the autonomous driving task. Correctness of such automated driving systems is crucial as incorrect behaviour may have catastrophic consequences. Autonomous vehicles operate in complex and dynamic environments, which requires decision-making and planning at different levels. The aim of such decision-making components in these systems is to make safe decisions at all times. The challenge of safety verification of these systems is crucial for the commercial deployment of full autonomy in vehicles. Testing for safety is expensive, impractical, and can never guarantee the absence of errors. In contrast, formal methods, which are techniques that use rigorous mathematical models to build hardware and software systems can provide a mathematical proof of the correctness of the system. The focus of this thesis is to address some of the challenges in the safety verification of decision-making in automated driving systems. A central question here is how to establish formal verification as an efficient tool for automated driving software development.A key finding is the need for an integrated formal approach to prove correctness and to provide a complete safety argument. This thesis provides insights into how three different formal verification approaches, namely supervisory control theory, model checking, and deductive verification differ in their application to automated driving and identifies the challenges associated with each method. It identifies the need for the introduction of more rigour in the requirement refinement process and presents one possible solution by using a formal model-based safety analysis approach. To address challenges in the manual modelling process, a possible solution by automatically learning formal models directly from code is proposed

    Extending the Exposure Score of Web Browsers by Incorporating CVSS

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Yet its content differs from one browser to another. Despite the privacy and security risks of User-Agent strings, very few works have tackled this problem. Our previous work proposed giving Internet browsers exposure relative scores to aid users to choose less intrusive ones. Thus, the objective of this work is to extend our previous work through: first, conducting a user study to identify its limitations. Second, extending the exposure score via incorporating data from the NVD. Third, providing a full implementation, instead of a limited prototype. The proposed system: assigns scores to users’ browsers upon visiting our website. It also suggests alternative safe browsers, and finally it allows updating the back-end database with a click of a button. We applied our method to a data set of more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available here [4].</p

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. MĂ€rz 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen UniversitĂ€t Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform fĂŒr den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur KnĂŒpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und AnsĂ€tze einem breiten Publikum aus Wissenschaft und Wirtschaft zu prĂ€sentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjĂ€hriges Bestehen hat ihn zu einer festen GrĂ¶ĂŸe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium fĂŒr Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu prĂ€sentieren. Vertreter der Projekte Generische Plattform fĂŒr SystemzuverlĂ€ssigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwĂ€rtigen Arbeiten vor. Dies bereichert denWorkshop durch zusĂ€tzliche Themenschwerpunkte und bietet eine wertvolle ErgĂ€nzung zu den BeitrĂ€gen der Autoren. [... aus dem Vorwort

    Find More Bugs with QuickCheck!

    Get PDF
    Random testing is increasingly popular and successful, but tends to spend most time rediscovering the ``most probable bugs'' again and again, reducing the value of long test runs on buggy software. We present a new automated method to adapt random test case generation so that already-discovered bugs are avoided, and further test effort can be devoted to searching for new bugs instead. We evaluate our method primarily against RANDOOP-style testing, in three different settings our method avoids rediscovering bugs more successfully than RANDOOP and in some cases finds bugs that RANDOOP did not find at all

    Towards Secure and Safe Appified Automated Vehicles

    Full text link
    The advancement in Autonomous Vehicles (AVs) has created an enormous market for the development of self-driving functionalities,raising the question of how it will transform the traditional vehicle development process. One adventurous proposal is to open the AV platform to third-party developers, so that AV functionalities can be developed in a crowd-sourcing way, which could provide tangible benefits to both automakers and end users. Some pioneering companies in the automotive industry have made the move to open the platform so that developers are allowed to test their code on the road. Such openness, however, brings serious security and safety issues by allowing untrusted code to run on the vehicle. In this paper, we introduce the concept of an Appified AV platform that opens the development framework to third-party developers. To further address the safety challenges, we propose an enhanced appified AV design schema called AVGuard, which focuses primarily on mitigating the threats brought about by untrusted code, leveraging theory in the vehicle evaluation field, and conducting program analysis techniques in the cybersecurity area. Our study provides guidelines and suggested practice for the future design of open AV platforms

    Formal Verification of Industrial Software and Neural Networks

    Get PDF
    Software ist ein wichtiger Bestandteil unsere heutige Gesellschaft. Da Software vermehrt in sicherheitskritischen Bereichen angewandt wird, mĂŒssen wir uns auf eine korrekte und sichere AusfĂŒhrung verlassen können. Besonders eingebettete Software, zum Beispiel in medizinischen GerĂ€ten, Autos oder Flugzeugen, muss grĂŒndlich und formal geprĂŒft werden. Die Software solcher eingebetteten Systeme kann man in zwei Komponenten aufgeteilt. In klassische (deterministische) Steuerungssoftware und maschinelle Lernverfahren zum Beispiel fĂŒr die Bilderkennung oder Kollisionsvermeidung angewandt werden. Das Ziel dieser Dissertation ist es den Stand der Technik bei der Verifikation von zwei Hauptkomponenten moderner eingebetteter Systeme zu verbessern: in C/C++ geschriebene Software und neuronalen Netze. FĂŒr beide Komponenten wird das Verifikationsproblem formal definiert und neue VerifikationsansĂ€tze werden vorgestellt

    Model Based Analysis and Test Generation for Flight Software

    Get PDF
    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission

    Use of domain-specific language in test automation

    Get PDF
    The primary aim of this research project was to investigate techniques to replace the complicated process of testing embedded systems in automotive domain. The multi-component domain was composed of different hardware to be used in testing procedure which increased the level of difficulty in testing for an operator. As a result, an existing semi-automated testing procedure was replaced by more simpler and efficient framework (ViBATA). A key step taken in this scenario was the replacement of manual GUI interface with the scriptable one to enhance the automation. This was achieved by building a Domain-specific language which allowed test definition in the form of human readable scripts which could be stored for later use. A DSL is a scripting language defined for a particular domain with compact expressiveness. In this case the domain is testing embedded systems in general and automotive systems in particular. The final product was a test case specification document in the form of XML as an output of generated code from this DSL which will be input to ViBATA to make test specification component automated. In this research a comparative analysis of existing DSLs for alternative domains and investigation of their applicability to the presented domain was also performed. The technologies used in this project are Xtext to define the DSL grammar, Xtend to generate code in Java and Simple framework to generate output in XML. The stages involved in DSL development and how these stages were implemented is covered in this thesis. The developed DSL for this domain is tested for automotive and calculator systems in this thesis which proved that this is more general and flexible. The DSL is consistent, efficient and automated test specification component of testing framework in embedded systems
    • 

    corecore