36,765 research outputs found

    Improving Facial Attribute Prediction using Semantic Segmentation

    Full text link
    Attributes are semantically meaningful characteristics whose applicability widely crosses category boundaries. They are particularly important in describing and recognizing concepts where no explicit training example is given, \textit{e.g., zero-shot learning}. Additionally, since attributes are human describable, they can be used for efficient human-computer interaction. In this paper, we propose to employ semantic segmentation to improve facial attribute prediction. The core idea lies in the fact that many facial attributes describe local properties. In other words, the probability of an attribute to appear in a face image is far from being uniform in the spatial domain. We build our facial attribute prediction model jointly with a deep semantic segmentation network. This harnesses the localization cues learned by the semantic segmentation to guide the attention of the attribute prediction to the regions where different attributes naturally show up. As a result of this approach, in addition to recognition, we are able to localize the attributes, despite merely having access to image level labels (weak supervision) during training. We evaluate our proposed method on CelebA and LFWA datasets and achieve superior results to the prior arts. Furthermore, we show that in the reverse problem, semantic face parsing improves when facial attributes are available. That reaffirms the need to jointly model these two interconnected tasks

    GFF: Gated Fully Fusion for Semantic Segmentation

    Full text link
    Semantic segmentation generates comprehensive understanding of scenes through densely predicting the category for each pixel. High-level features from Deep Convolutional Neural Networks already demonstrate their effectiveness in semantic segmentation tasks, however the coarse resolution of high-level features often leads to inferior results for small/thin objects where detailed information is important. It is natural to consider importing low level features to compensate for the lost detailed information in high-level features.Unfortunately, simply combining multi-level features suffers from the semantic gap among them. In this paper, we propose a new architecture, named Gated Fully Fusion (GFF), to selectively fuse features from multiple levels using gates in a fully connected way. Specifically, features at each level are enhanced by higher-level features with stronger semantics and lower-level features with more details, and gates are used to control the propagation of useful information which significantly reduces the noises during fusion. We achieve the state of the art results on four challenging scene parsing datasets including Cityscapes, Pascal Context, COCO-stuff and ADE20K.Comment: accepted by AAAI-2020(oral

    Self-Supervised Relative Depth Learning for Urban Scene Understanding

    Full text link
    As an agent moves through the world, the apparent motion of scene elements is (usually) inversely proportional to their depth. It is natural for a learning agent to associate image patterns with the magnitude of their displacement over time: as the agent moves, faraway mountains don't move much; nearby trees move a lot. This natural relationship between the appearance of objects and their motion is a rich source of information about the world. In this work, we start by training a deep network, using fully automatic supervision, to predict relative scene depth from single images. The relative depth training images are automatically derived from simple videos of cars moving through a scene, using recent motion segmentation techniques, and no human-provided labels. This proxy task of predicting relative depth from a single image induces features in the network that result in large improvements in a set of downstream tasks including semantic segmentation, joint road segmentation and car detection, and monocular (absolute) depth estimation, over a network trained from scratch. The improvement on the semantic segmentation task is greater than those produced by any other automatically supervised methods. Moreover, for monocular depth estimation, our unsupervised pre-training method even outperforms supervised pre-training with ImageNet. In addition, we demonstrate benefits from learning to predict (unsupervised) relative depth in the specific videos associated with various downstream tasks. We adapt to the specific scenes in those tasks in an unsupervised manner to improve performance. In summary, for semantic segmentation, we present state-of-the-art results among methods that do not use supervised pre-training, and we even exceed the performance of supervised ImageNet pre-trained models for monocular depth estimation, achieving results that are comparable with state-of-the-art methods
    • …
    corecore