16,199 research outputs found

    Optimisation of sample thickness for THz-TDS measurements

    Get PDF
    How thick should the sample be for a transmission THz-TDS measurement? Should the sample be as thick as possible? The answer is `no'. Although more thickness allows T-rays to interact more with bulk material, SNR rolls off with thickness due to signal attenuation. Then, should the sample be extremely thin? Again, the answer is `no'. A sample that is too thin renders itself nearly invisible to T-rays, in such a way that the system can hardly sense the difference between the sample and a free space path. So, where is the optimal boundary between `too thick' and `too thin'? The trade-off is analysed and revealed in this paper, where our approach is to find the optimal thickness that results in the minimal variance of measured optical constants.Comment: 13 pages, 11 figure

    Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

    Get PDF
    An expression for the bit error rate of a multiple subcarrier intensity-modulated atmospheric optical communication system employing spatial diversity is derived. Spatial diversity is used to mitigate scintillation caused by atmospheric turbulence, which is assumed to obey lognormal distribution. Optimal but complex maximum ratio, equal gain combining (EGC) and relatively simple selection combining spatial diversity techniques in a clear atmosphere are considered. Each subcarrier is modulated using binary phase shift keying. Laser irradiance is subsequently modulated by a subcarrier signal, and a direct detection PIN receiver is employed (i.e. intensity modulation/direction detection). At a subcarrier level, coherent demodulation is used to extract the transmitted data/information. The performance of on–off-keying is also presented and compared with the subcarrier intensity modulation under the same atmospheric conditions

    Asteroseismic estimate of helium abundance of a solar analog binary system

    Full text link
    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 years of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range 0.231 to 0.251 and that of 16 Cyg B lies in the range 0.218 to 0.266.Comment: Accepted for publication in Ap

    Search for psi(3770)\ra\rho\pi at the BESII detector at the Beijing Electron-Positron Collider

    Full text link
    Non-DDˉD\bar{D} decay \psppto \rhopi is searched for using a data sample of (17.3±0.5)pb−1(17.3\pm 0.5) pb^{-1} taken at the center-of-mass energy of 3.773 GeV by the BESII detector at the BEPC. No \rhopi signal is observed, and the upper limit of the cross section is measured to be \sigma(\EETO \rhopi)<6.0 pb at 90% C. L. Considering the interference between the continuum amplitude and the \pspp resonance amplitude, the branching fraction of \pspp decays to ρπ\rho\pi is determined to be \BR(\pspp\ra\rho\pi)\in(6.0\times10^{-6}, 2.4\times10^{-3}) at 90% C. L. This is in agreement with the prediction of the SS- and DD-wave mixing scheme of the charmonium states for solving the ``\rhopi puzzle'' between \jpsi and \psp decays.Comment: 15 pages, 5 figure
    • 

    corecore