1,705 research outputs found

    Towards Time-Limited H2\mathcal H_2-Optimal Model Order Reduction

    Get PDF
    In order to solve partial differential equations numerically and accurately, a high order spatial discretization is usually needed. Model order reduction (MOR) techniques are often used to reduce the order of spatially-discretized systems and hence reduce computational complexity. A particular class of MOR techniques are H2\mathcal H_2-optimal methods such as the iterative rational Krylov subspace algorithm (IRKA) and related schemes. However, these methods are used to obtain good approximations on a infinite time-horizon. Thus, in this work, our main goal is to discuss MOR schemes for time-limited linear systems. For this, we propose an alternative time-limited H2\mathcal H_2-norm and show its connection with the time-limited Gramians. We then provide first-order optimality conditions for an optimal reduced order model (ROM) with respect to the time-limited H2\mathcal H_2-norm. Based on these optimality conditions, we propose an iterative scheme, which, upon convergence, aims at satisfying these conditions approximately. Then, we analyze how far away the obtained ROM due to the proposed algorithm is from satisfying the optimality conditions. We test the efficiency of the proposed iterative scheme using various numerical examples and illustrate that the newly proposed iterative method can lead to a better reduced-order compared to the unrestricted IRKA in the finite time interval of interest

    An H2-type error bound for time-limited balanced truncation

    Get PDF
    When solving partial differential equations numerically, usually a high order spatial discretization is needed. Model order reduction (MOR) techniques are often used to reduce the order of spatially-discretized systems and hence reduce computational complexity. A particular MOR technique to obtain a reduced order model (ROM) is balanced truncation (BT). However, if one aims at finding a good ROM on a certain finite time interval only, time-limited BT (TLBT) can be a more accurate alternative. So far, no error bound on TLBT has been proved. In this paper, we close this gap in the theory by providing an H2 error bound for TLBT with two different representations. The performance of the error bound is then shown in several numerical experiments

    Extreme Value laws for dynamical systems under observational noise

    Full text link
    In this paper we prove the existence of Extreme Value Laws for dynamical systems perturbed by instrument-like-error, also called observational noise. An orbit perturbed with observational noise mimics the behavior of an instrumentally recorded time series. Instrument characteristics - defined as precision and accuracy - act both by truncating and randomly displacing the real value of a measured observable. Here we analyze both these effects from a theoretical and numerical point of view. First we show that classical extreme value laws can be found for orbits of dynamical systems perturbed with observational noise. Then we present numerical experiments to support the theoretical findings and give an indication of the order of magnitude of the instrumental perturbations which cause relevant deviations from the extreme value laws observed in deterministic dynamical systems. Finally, we show that the observational noise preserves the structure of the deterministic attractor. This goes against the common assumption that random transformations cause the orbits asymptotically fill the ambient space with a loss of information about any fractal structures present on the attractor
    corecore