540 research outputs found

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobiā€“Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Implicitly restarted Krylov subspace methods for stable partial realizations

    No full text
    Published versio

    An Arnoldi-frontal approach for the stability analysis of flows in a collapsible channel

    Get PDF
    In this paper, we present a new approach based on a combination of the Arnoldi and frontal methods for solving large sparse asymmetric and generalized complex eigenvalue problems. The new eigensolver seeks the most unstable eigensolution in the Krylov subspace and makes use of the efficiency of the frontal solver developed for the finite element methods. The approach is used for a stability analysis of flows in a collapsible channel and is found to significantly improve the computational efficiency compared to the traditionally used QZ solver or a standard Arnoldi method. With the new approach, we are able to validate the previous results obtained either on a much coarser mesh or estimated from unsteady simulations. New neutral stability solutions of the system have been obtained which are beyond the limits of previously used methods
    • ā€¦
    corecore