382 research outputs found

    Nonlinear proper orthogonal decomposition for convection-dominated flows

    Get PDF
    Autoencoder techniques find increasingly common use in reduced order modeling as a means to create a latent space. This reduced order representation offers a modular data-driven modeling approach for nonlinear dynamical systems when integrated with a time series predictive model. In this Letter, we put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics. By eliminating the projection error due to the truncation of Galerkin models, a key enabler of the proposed nonintrusive approach is the kinematic construction of a nonlinear mapping between the full-rank expansion of the POD coefficients and the latent space where the dynamics evolve. We test our framework for model reduction of a convection-dominated system, which is generally challenging for reduced order models. Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC0019290. O.S. gratefully acknowledges the Early Career Research Program (ECRP) support of the U.S. Department of Energy. O.S. also gratefully acknowledges the financial support of the National Science Foundation under Award No. DMS-2012255. T.I. acknowledges support through National Science Foundation Grant No. DMS-2012253.acceptedVersio

    Deep Conservation: A latent-dynamics model for exact satisfaction of physical conservation laws

    Full text link
    This work proposes an approach for latent-dynamics learning that exactly enforces physical conservation laws. The method comprises two steps. First, the method computes a low-dimensional embedding of the high-dimensional dynamical-system state using deep convolutional autoencoders. This defines a low-dimensional nonlinear manifold on which the state is subsequently enforced to evolve. Second, the method defines a latent-dynamics model that associates with the solution to a constrained optimization problem. Here, the objective function is defined as the sum of squares of conservation-law violations over control volumes within a finite-volume discretization of the problem; nonlinear equality constraints explicitly enforce conservation over prescribed subdomains of the problem. Under modest conditions, the resulting dynamics model guarantees that the time-evolution of the latent state exactly satisfies conservation laws over the prescribed subdomains

    Autoencoding for the 'Good Dictionary' of eigen pairs of the Koopman Operator

    Full text link
    Reduced order modelling relies on representing complex dynamical systems using simplified modes, which can be achieved through Koopman operator analysis. However, computing Koopman eigen pairs for high-dimensional observable data can be inefficient. This paper proposes using deep autoencoders, a type of deep learning technique, to perform non-linear geometric transformations on raw data before computing Koopman eigen vectors. The encoded data produced by the deep autoencoder is diffeomorphic to a manifold of the dynamical system, and has a significantly lower dimension than the raw data. To handle high-dimensional time series data, Takens's time delay embedding is presented as a pre-processing technique. The paper concludes by presenting examples of these techniques in action.Comment: 21 Pages, 17 Figures, Journal Pape

    A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs

    Get PDF
    Traditional reduced order modeling techniques such as the reduced basis (RB) method (relying, e.g., on proper orthogonal decomposition (POD)) suffer from severe limitations when dealing with nonlinear time-dependent parametrized PDEs, because of the fundamental assumption of linear superimposition of modes they are based on. For this reason, in the case of problems featuring coherent structures that propagate over time such as transport, wave, or convection-dominated phenomena, the RB method usually yields inefficient reduced order models (ROMs) if one aims at obtaining reduced order approximations sufficiently accurate compared to the high-fidelity, full order model (FOM) solution. To overcome these limitations, in this work, we propose a new nonlinear approach to set reduced order models by exploiting deep learning (DL) algorithms. In the resulting nonlinear ROM, which we refer to as DL-ROM, both the nonlinear trial manifold (corresponding to the set of basis functions in a linear ROM) as well as the nonlinear reduced dynamics (corresponding to the projection stage in a linear ROM) are learned in a non-intrusive way by relying on DL algorithms; the latter are trained on a set of FOM solutions obtained for different parameter values. In this paper, we show how to construct a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs; moreover, we assess its accuracy on test cases featuring different parametrized PDE problems. Numerical results indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE solutions manifold are able to approximate the solution of parametrized PDEs in situations where a huge number of POD modes would be necessary to achieve the same degree of accuracy.Comment: 28 page

    Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning

    Full text link
    In this paper, we put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements. We build on the fact that in a realistic application, there are uncertainties in initial conditions, boundary conditions, model parameters, and/or field measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities due to the modal truncation, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM-Nudge approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate the idea with the viscous Burgers problem, as a benchmark test bed with quadratic nonlinearity and Laplacian dissipation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-Nudge behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity. This first step in our assessment of the proposed model shows that the LSTM nudging could represent a viable realtime predictive tool in emerging digital twin systems
    • …
    corecore