3,954 research outputs found

    Incentivizing Truth-Telling in MPC-based Load Frequency Control

    Full text link
    We present a mechanism for socially efficient implementation of model predictive control (MPC) algorithms for load frequency control (LFC) in the presence of self-interested power generators. Specifically, we consider a situation in which the system operator seeks to implement an MPC-based LFC for aggregated social cost minimization, but necessary information such as individual generators' cost functions is privately owned. Without appropriate monetary compensation mechanisms that incentivize truth-telling, self-interested market participants may be inclined to misreport their private parameters in an effort to maximize their own profits, which may result in a loss of social welfare. The main challenge in our framework arises from the fact that every participant's strategy at any time affects the future state of other participants; the consequences of such dynamic coupling has not been fully addressed in the literature on online mechanism design. We propose a class of real-time monetary compensation schemes that incentivize market participants to report their private parameters truthfully at every time step, which enables the system operator to implement MPC-based LFC in a socially optimal manner

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Impact of communication delay on distributed load frequency control (dis-LFC) in multi-area power system (MAPS)

    Get PDF
    In this paper, impact of communication delay on distributed load frequency control (dis-LFC) of multi-area interconnected power system (MAIPS) is investigated. Load frequency control (LFC), as one of ancillary services, is aimed at maintaining system frequency and inter-area tie-line power close to the scheduled values, by load reference set-point manipulation and consideration of the system constraints. Centralized LFC (cen-LFC) requires inherent communication bandwidth limitations, stability and computational complexity, as such, it is not a good technique for the control of large-scale and geographically wide power systems. To decrease the system dimensionality and increase performance efficiency, distributed and decentralized control techniques are adopted. In distributed LFC (dis-LFC) of MAIPS, each control area (CA) is equipped with a local controller and are made to exchange their control actions by communication with controllers in the neighboring areas. The delay in this communication can affect the performance of the LFC scheme and in a worst case deteriorates power system stability. To investigate the impact of this delay, model predictive controller (MPC) is employed in the presence of constraints and external disturbances to serve as LFC tracking control. The scheme discretizes the system and solves an on-line optimization at each time sample. The system is subjected to communication delay between the CAs, and the response to the step load perturbation with and without the delay. Time-based simulations were used on a three-area MAIPS in MATLAB/SIMULINK environment to verify the investigations. The overshoot and settling time in the results reveals deterioration of the control performance with delay. Also, the dis-LFC led to zero steady states errors for frequency deviations and enhanced the MAIPS’ performance. With this achievement, MPC proved its constraints handling capability, online rolling optimization and ability to predict future behavior of systems

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Distributed control of deregulated electrical power networks

    Get PDF
    A prerequisite for reliable operation of electrical power networks is that supply and demand are balanced at all time, as efficient ways for storing large amounts of electrical energy are scarce. Balancing is challenging, however, due to the power system's dimensions and complexity, the low controllability and predictability of demand, and due to strict physical and security limitations, such as finitely fast generator dynamics and finite transmission-line capacities. The need for efficient and secure balancing arrangements is growing stronger with the increasing integration of distributed generation (DG), the ongoing deregulation of production and consumption of electrical energy, and thus, also the provision of many of the ancillary services that are essential for network stability. DG is mostly based on renewable, intermittent sources such as wind and sun, and consequently, it is associated with a much larger uncertainty in supply than conventional, centralized generation. Moreover, with the emergence of deregulated energy markets as core operational mechanism, the prime goal of power system operation is shifted from centralized minimization of costs to the maximization of individual profit by a large number of competing, autonomous market agents. The main objective of this thesis is to investigate the control-technical possibilities for ensuring efficient, reliable and stable operation of deregulated and badly predictable electrical power networks. Its contributions cover aspects of power system operation on a time scale ranging from day-ahead trading of electrical energy to second-based load-frequency control. As a first contribution, we identify the maximization of security of supply and market efficiency as the two main, yet conflicting objectives of power system operation. Special attention is paid to congestion management, which is an aspect of power system operation where the tension between reliability and efficiency is particularly apparent. More specifically, the differences between locational pricing and cost-based congestion redispatch are analyzed, followed by an assessment of their effects on grid operation. Next, we demonstrate that the current synchronous, energy-based market and incentive system does not necessarily motivate producers to exchange power profiles with the electricity grid that contribute to network stability and security of supply. The thesis provides an alternative production scheduling concept as a means to overcome this issue, which relies on standard market arrangements, but settles energy transactions in an asynchronous way. Theoretical analysis and simulation results illustrate that by adopting this method, scheduling efficiency is improved and the strain on balancing reserves can be reduced considerably. A major part of this thesis is dedicated to real-time, i.e., closed-loop, balancing or load-frequency control. With the increasing share of badly predictable DG, there is a growing need for efficient balancing mechanisms that can account for generator and transmission constraints during the operational day. A promising candidate solution is model predictive control (MPC). Because the large dimensions and complexity of electrical power networks hamper a standard, centralized implementation of MPC, we evaluate a number of scalable alternatives, in which the overall control action is computed by a set of local predictive control laws, instead. The extent of inter-controller communication is shown to be positively correlated with prediction accuracy and, thus, attainable closed-loop performance. Iterative, system-wide communication/coordination is usually not feasible for large networks, however, and consequently, Pareto-optimal performance and coupled-constraint handling are currently out of reach. This also hampers the application of standard cost-based stabilization schemes, in which closed-loop stability is attained via monotonic convergence of a single, optimal system-wide performance cost. Motivated by the observations regarding non-centralized MPC, the focus is then shifted to distributed control methods for networks of interconnected dynamical systems, with power systems as particular field of application, that can ensure stability based on local model and state information only. First, we propose a non-centralized, constraint-based stabilization scheme, in which the set of stabilizing control actions is specified via separable convergence conditions for a collection of a-priori synthesized structured max-control Lyapunov functions (max-CLFs). The method is shown to be non-conservative, in the sense that non-monotonic convergence of the structured functions along closed-loop trajectories is allowed, whereas their construction establishes the existence of a control Lyapunov function, and thus, stability, for the full, interconnected dynamics. Then, an alternative method is provided in which also the demand for a monotonically converging full-system CLF is relaxed while retaining the stability certificate. The conditions are embedded in an almost-decentralized Lyapunov-based MPC scheme, in which the local control laws rely on neighbor-to-neighbor communication only. Secondly, a generalized theorem and example system are provided to show that stabilization methods that rely on the off-line synthesis of fixed quadratic storage functions (SFs) fail for even the simplest of linear, time-invariant networks, if they contain one or more subsystems that are not stable under decoupled operation. This may also impede the application of max-CLF control. As key contribution of this thesis, to solve this issue, we endow the storage functions with a finite set of state-dependent parameters. Max-type convergence conditions are employed to construct a Lyapunov function for the full network, whereas monotonic convergence of the individual SFs is not required. The merit of the provided approach is that the storage functions can be constructed during operation, i.e., along a closed-loop trajectory, thus removing the impediment of centralized, off-line LF synthesis associated with fixed-parameter SFs. It is shown that parameterized-SF synthesis conditions can be efficiently exploited to obtain a scalable, trajectory-dependent control scheme that relies on non-iterative neighbor-to-neighbor communication only. For input-affine network dynamics and quadratic storage functions, the procedure can be implemented by solving a single semi-definite program per node and sampling instant, in a receding horizon fashion. Moreover, by interpolating a collection of so-obtained input trajectories, a low-complexity explicit control law for linear, time-invariant systems is obtained that extends the trajectory-specific convergence property to a much stronger guarantee of closed-loop asymptotic stability for a particular set of initial conditions. Finally, we consider the application of max-CLF and parameterized SFs for real-time balancing in multimachine electrical power networks. Given that generators are operated by competitive, profit-driven market agents, the stabilization scheme is extended with the competitive optimization of a set of arbitrarily chosen, local performance cost functions over a finite, receding prediction horizon. The suitability of the distributed Lyapunov-based predictive control and parameterized storage function algorithms is evaluated by simulating them in closed-loop with the 7-machine CIGRÉ benchmark system. The thesis concludes by summarizing the main contributions, followed by ideas for future research

    On the contribution of wind farms in automatic generation control: Review and new control approach

    Get PDF
    © 2018 by the authors. Wind farms can contribute to ancillary services to the power system, by advancing and adopting new control techniques in existing, and also in new, wind turbine generator systems. One of the most important aspects of ancillary service related to wind farms is frequency regulation, which is partitioned into inertial response, primary control, and supplementary control or automatic generation control (AGC). The contribution of wind farms for the first two is well addressed in literature; however, the AGC and its associated controls require more attention. In this paper, in the first step, the contribution of wind farms in supplementary/load frequency control of AGC is overviewed. As second step, a fractional order proportional-integral-differential (FOPID) controller is proposed to control the governor speed of wind turbine to contribute to the AGC. The performance of FOPID controller is compared with classic proportional-integral-differential (PID) controller, to demonstrate the efficacy of the proposed control method in the frequency regulation of a two-area power system. Furthermore, the effect of penetration level of wind farms on the load frequency control is analyzed

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Automatic Generation Control System: The Impact of Battery Energy Storage in Multi Area Network

    Get PDF
    Renewable energy sources (RES) are currently experiencing significant expansion, and the integration of these sources into power systems necessitates more complex auxiliary facilities. Battery energy storage systems (BESS) have been widely recognized in recent literature as an effective means of enhancing control capabilities. This study focuses on the implementation of an Automatic Generation Control (AGC) system with the integration of BESS in a multi-area network. Maintaining system frequency, especially during peak loads, poses challenges for AGC systems. The objective of this study is to investigate the utilization of BESS to enhance AGC for frequency control in power system networks. Additionally, the effectiveness of BESS in improving frequency control in multi-area networks is demonstrated through several case studies. The AGC and BESS simulations were conducted using MATLAB Simulink to evaluate the proposed frequency control method's effectiveness. &nbsp
    corecore