1,856 research outputs found

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    A robust multi-model predictive controller for distributed parameter systems

    Get PDF
    12 páginas, 6 figurasIn this work a robust nonlinear model predictive controller for nonlinear convection–diffusion-reaction systems is presented. The controller makes use of a collection of reduced order approximations of the plant (models) reconstructed on-line by projection methods on proper orthogonal decomposition (POD) basis functions. The model selection and model update step is based on a sufficient condition that determines the maximum allowable process-model mismatch to guarantee stable control performance despite process uncertainty and disturbances. Proofs on the existence of a sequence of feasible approximations and control stability are given. Since plant approximations are built on-line based on actual measurements, the proposed controller can be interpreted as a multi-model nonlinear predictive control (MMPC). The performance of the MMPC strategy is illustrated by simulation experiments on a problem that involves reactant concentration control of a tubular reactor with recycle.This work has been also partially founded by the Spanish Ministry of Science and Innovation (SMART-QC, AGL2008-05267-C03-01), the FP7 CAFE project (KBBE-2007-1-212754), the Project PTDC/EQU-ESI/73458/2006 from the Portuguese Foundation for Science and Technology and PI grant 07/IN.1/I1838 by Science Foundation Ireland. Also, the authors acknowledge financial support received by a collaborative grant GRICES-CSIC.Peer reviewe

    A robust multi-model predictive controller for distributed parameter systems

    Get PDF
    12 páginas, 6 figurasIn this work a robust nonlinear model predictive controller for nonlinear convection–diffusion-reaction systems is presented. The controller makes use of a collection of reduced order approximations of the plant (models) reconstructed on-line by projection methods on proper orthogonal decomposition (POD) basis functions. The model selection and model update step is based on a sufficient condition that determines the maximum allowable process-model mismatch to guarantee stable control performance despite process uncertainty and disturbances. Proofs on the existence of a sequence of feasible approximations and control stability are given. Since plant approximations are built on-line based on actual measurements, the proposed controller can be interpreted as a multi-model nonlinear predictive control (MMPC). The performance of the MMPC strategy is illustrated by simulation experiments on a problem that involves reactant concentration control of a tubular reactor with recycle.This work has been also partially founded by the Spanish Ministry of Science and Innovation (SMART-QC, AGL2008-05267-C03-01), the FP7 CAFE project (KBBE-2007-1-212754), the Project PTDC/EQU-ESI/73458/2006 from the Portuguese Foundation for Science and Technology and PI grant 07/IN.1/I1838 by Science Foundation Ireland. Also, the authors acknowledge financial support received by a collaborative grant GRICES-CSIC.Peer reviewe
    • …
    corecore