1,342 research outputs found

    Multi parametric model predictive control based on laguerre model for permanent magnet linear synchronous motors

    Get PDF
    The permanent magnet linear motors are widely used in various industrial applications due to its advantages in comparisons with rotary motors such as mechanical durability and directly creating linear motions without gears or belts. The main difficulties of its control design are that the control performances include the tracking of position and velocity as well as guarantee limitations of the voltage control and its variation. In this work, a cascade control strategy including an inner and an outer loop is applied to synchronous linear motor. Particularly, an offline MPC controller based on MPP method and Laguerre model was proposed for inner loop and the outer controller was designed with the aid of nonlinear damping method. The numerical simulation was implemented to validate performance of the proposed controller under voltage input constraints

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    Mathematical Modelling and Predictive Control of Permanent Magnet Synchronous Motor Drives

    Get PDF
    The paper deals with a mathematical modellingof the three-phase Permanent Magnet Synchronous Motors(PMSM) and their model-based control. These motors areused in drives of robots and machine tools. The constructionof their mathematical model is discussed here with respectto a model-based control design. The model is composedvia mathematical-physical analysis. The analysis is outlinedin the main theoretical points. As a promising model-basedapproach, the predictive control is explained. It representsjust a promising alternative to the standard solution basedon the vector cascade control

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    An Effective Model-Free Predictive Current Control for Synchronous Reluctance Motor Drives

    Get PDF
    The performances of a model predictive control algorithm largely depend on the knowledge of the system model. A model-free predictive control approach skips all the effects of parameters variations or mismatches, as well as of model nonlinearity and uncertainties. A finite-set model-free current predictive control is proposed in this paper. The current variations predictions induced by the eight base inverter voltage vectors are estimated by means of the previous measurements stored into lookup tables. To keep the current variations information up to date, the three current measurements due to the three most recent feeding voltages are combined together to reconstruct all the others. The reconstruction is performed by taking advantage of the relationships between the three different base voltage vectors involved in the process. In particular, 210 possible combinations of three-state voltage vectors can be found, but they can be gathered together in six different groups. A light and computationally fast algorithm for the group identification is proposed in this paper. Finally, the current reconstruction for the prediction of future steps is thoroughly analyzed. A compensation of the motor rotation effect on the input voltages is proposed, too. The control scheme is evaluated by means of both simulation and experimental evidences on two different synchronous reluctance motors
    corecore