42 research outputs found

    ๋น„์„ ํ˜• ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•œ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ํ˜„์ˆ˜ ์šด์†ก์˜ ๊ฒฝ๋กœ ๊ณ„ํš ๋ฐ ์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๊น€ํ˜„์ง„.๊ฒฝ๋กœ ๊ณ„ํš๊ณผ ์ œ์–ด๋Š” ์•ˆ์ „ํ•˜๊ณ  ์•ˆ์ •์ ์œผ๋กœ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์šด์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ถฉ๋Œ์„ ํšŒํ”ผํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์ด๋ฅผ ์‹ค์ œ๋กœ ์ถ”์ข…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ์ด ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค. ์ผ๋ฐ˜ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ ๋™์—ญํ•™ ๋ชจ๋ธ์€ ๋†’์€ ์ฐจ์›์„ ๊ฐ€์ง„ ๋น„์„ ํ˜•์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š”๋ฐ, ํ˜„์ˆ˜ ์šด์†ก ๋ฌผ์ฒด๋ฅผ ์ถ”๊ฐ€ํ•  ๊ฒฝ์šฐ ๊ณ„์‚ฐ์ด ๋”์šฑ ๋ณต์žกํ•ด์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜„์ˆ˜ ์šด์†ก์— ์žˆ์–ด ๊ฒฝ๋กœ ๊ณ„ํš๊ณผ ์ œ์–ด์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ๋‹จ์ผ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜„์ˆ˜ ์šด์†ก์„ ๋‹ค๋ฃฌ๋‹ค. ๋ฌผ์ฒด๊ฐ€ ๋ณ„๋„์˜ ์—‘์ธ„์—์ดํ„ฐ ์—†์ด ์šด์†ก๋  ๊ฒฝ์šฐ ๋ฌผ์ฒด๋Š” ๊ธฐ์ฒด์˜ ์›€์ง์ž„์— ์˜ํ•ด์„œ๋งŒ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ๋™์—ญํ•™์‹์˜ ๋†’์€ ๋น„์„ ํ˜•์„ฑ์œผ๋กœ ์šด์šฉ์— ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ์ด๋ฅผ ๊ฒฝ๊ฐ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ํšŒ์ „ ๋™์—ญํ•™์‹์˜ ๋น„์„ ํ˜•์„ฑ์„ ์ค„์ด๊ณ  ์ž์„ธ ์ œ์–ด์— ์กด์žฌํ•˜๋Š” ์‹œ๊ฐ„ ์ง€์—ฐ์„ ๊ณ ๋ คํ•˜์—ฌ ๋™์—ญํ•™์‹์„ ๊ฐ„์†Œํ™”ํ•œ๋‹ค. ๊ฒฝ๋กœ ๊ณ„ํš์— ์žˆ์–ด์„œ๋Š” ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ์œ„ํ•ด ๊ธฐ์ฒด, ์ผ€์ด๋ธ”, ๊ทธ๋ฆฌ๊ณ  ์šด์†ก ๋ฌผ์ฒด๋ฅผ ๋‹ค๋ฅธ ํฌ๊ธฐ์™€ ๋ชจ์–‘์„ ๊ฐ€์ง„ ํƒ€์›์ฒด๋“ค๋กœ ๊ฐ์‹ธ๋ฉฐ, ํšจ๊ณผ์ ์ด๋ฉด์„œ๋„ ๋œ ๋ณด์ˆ˜์ ์ธ ๋ฐฉ์‹์œผ๋กœ ์ถฉ๋Œ ํšŒํ”ผ ๊ตฌ์†์กฐ๊ฑด์„ ๋ถ€๊ณผํ•œ๋‹ค. Augmented Lagrangian ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋น„์„ ํ˜• ๊ตฌ์†์กฐ๊ฑด์ด ๋ถ€๊ณผ๋œ ๋น„์„ ํ˜• ๋ฌธ์ œ๋ฅผ ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™”ํ•˜์—ฌ ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ƒ์„ฑ๋œ ๊ฒฝ๋กœ๋ฅผ ์ถ”์ข…ํ•˜๊ธฐ ์œ„ํ•ด์„œ Sequential linear quadratic ์†”๋ฒ„๋ฅผ ์ด์šฉํ•œ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด๊ธฐ๋กœ ์ตœ์  ์ œ์–ด ์ž…๋ ฅ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋‹ค์ค‘ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜‘์—… ํ˜„์ˆ˜ ์šด์†ก ์‹œ์Šคํ…œ์„ ๋‹ค๋ฃฌ๋‹ค. ํ•ด๋‹น ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ๋ณ€์ˆ˜๋‚˜ ๋™์—ญํ•™์‹์—์„œ ์—ฐ๊ฒฐ๋œ(coupled) ํ•ญ์˜ ๊ฐœ์ˆ˜๋Š” ๊ธฐ์ฒด์˜ ์ˆ˜์— ๋น„๋ก€ํ•˜์—ฌ ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํšจ๊ณผ์ ์ธ ๊ธฐ๋ฒ• ์—†์ด๋Š” ์ตœ์ ํ™”์— ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ๋†’์€ ๋น„์„ ํ˜•์„ฑ์„ ๊ฐ€์ง„ ๋™์—ญํ•™์‹์˜ ๋ณต์žก์„ฑ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•˜์—ฌ ๋ฏธ๋ถ„ ํ‰ํƒ„์„ฑ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ฒฝ๋กœ ๋˜ํ•œ piece-wise Bernstein ๋‹คํ•ญ์‹์„ ์ด์šฉํ•˜์—ฌ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”ํ•˜์—ฌ ์ตœ์ ํ™” ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์ธ๋‹ค. ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์ถฉ๋Œ ํšŒํ”ผ ๊ตฌ์†์กฐ๊ฑด๋“ค์— ๋Œ€ํ•ด ๋ณผ๋กํ™”(convexification)๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์šด์†ก ๋ฌผ์ฒด์˜ ๊ฒฝ๋กœ์™€ ์žฅ๋ ฅ์˜ ๊ฒฝ๋กœ์— ๋Œ€ํ•œ ๋ณผ๋กํ•œ(convex) ํ•˜์œ„๋ฌธ์ œ๋“ค์ด ๋งŒ๋“ค์–ด์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•˜์œ„๋ฌธ์ œ์ธ ๋ฌผ์ฒด ๊ฒฝ๋กœ ์ƒ์„ฑ์—์„œ๋Š”, ์žฅ์• ๋ฌผ ํšŒํ”ผ์™€ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ ๊ณต๊ฐ„์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์•ˆ์ „ ๋น„ํ–‰ ํ†ต๋กœ(safe flight corridor, SFC)์™€ ์—ฌ์œ  ๊ฐ„๊ฒฉ ๊ตฌ์†์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์ตœ์ ํ™”ํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์žฅ๋ ฅ ๋ฒกํ„ฐ๋“ค์˜ ๊ฒฝ๋กœ๋Š” ์žฅ์• ๋ฌผ ํšŒํ”ผ์™€ ์ƒํ˜ธ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์•ˆ์ „ ๋น„ํ–‰ ์„นํ„ฐ(safe flight sector, SFS)์™€ ์ƒ๋Œ€ ์•ˆ์ „ ๋น„ํ–‰ ์„นํ„ฐ(relative safe flight sector, RSFS) ๊ตฌ์†์กฐ๊ฑด์„ ๋ถ€๊ณผํ•˜์—ฌ ์ตœ์ ํ™”ํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์œผ๋กœ ๋ณต์žกํ•œ ํ™˜๊ฒฝ์—์„œ ํšจ์œจ์ ์ธ ๊ฒฝ๋กœ ๊ณ„ํš ๊ธฐ๋ฒ•์„ ์‹œ์—ฐํ•˜๋ฉฐ ๊ฒ€์ฆํ•œ๋‹ค.Trajectory generation and control are fundamental requirements for safe and stable operation of multi-rotors. The dynamic model should be considered to generate efficient and collision-free trajectories with feasibility. While the dynamic model of a bare multi-rotor is expressed non-linearly with high dimensions which results in computational loads, the suspended load increases the complexity further. This dissertation presents efficient algorithms for trajectory generation and control of multi-rotors with a suspended load. A single multi-rotor with a suspended load is addressed first. Since the load is suspended through a cable without any actuator, movement of the load must be controlled via maneuvers of the multi-rotor. However, the highly non-linear dynamics of the system results in difficulties. To relive them, the rotational dynamics is simplified to reduce the non-linearity and consider the delay in attitude control. For trajectory generation, the vehicle, cable, and load are considered as ellipsoids with different sizes and shapes, and collision-free constraints are expressed in an efficient and less-conservative way. The augmented Lagrangian method is applied to solve a nonlinear optimization problem with nonlinear constraints in real-time. Model predictive control with the sequential linear quadratic solver is used to track the generated trajectories. The proposed algorithm is validated with several simulations and experiment. A system with multiple multi-rotors for cooperative transportation of a suspended load is addressed next. As the system has more state variables and coupling terms in the dynamic equation than the system with a single multi-rotor, optimization takes a long time without an efficient method. The differential flatness of the system is used to reduce the complexity of the highly non-linear dynamic equation. The trajectories are also parameterized using piece-wise Bernstein polynomials to decrease the number of optimization variables. By decomposing an optimization problem and performing convexification, convex sub-problems are formulated for the load and the tension trajectories optimization, respectively. In each sub-problem, a light-weight sampling method is used to find a feasible and low-cost trajectory as initialization. In the first sub-problem, the load trajectory is optimized with safe flight corridor (SFC) and clearance constraints for collision avoidance and security of space for the multi-rotors. Then, the tension histories are optimized with safe flight sector (SFS) and relative safe flight sector (RSFS) constraints for obstacle and inter-agent collision avoidance. Simulations and experiments are conducted to demonstrate efficient trajectory generation in a cluttered environment and validate the proposed algorithms.Chapter 1 Introduction 1 1.1 Literature Survey 5 1.2 Contributions 9 1.3 Outline 10 Chapter 2 Single Multi-rotor with a Suspended Load 11 2.1 Dynamics 11 2.2 Trajectory Generation 23 2.3 Optimal Control 31 Chapter 3 Multiple Multi-rotors with a Suspended Load 36 3.1 Problem Setting 36 3.2 Load Trajectory Generation 45 3.3 Tension History Generation 54 Chapter 4 Experimental Validation 68 4.1 Single Multi-rotor with a Suspended Load 68 4.2 Multiple Multi-rotors with a Suspended Load 79 Chapter 5 Conclusion 100 Appendix A Detailed Derivation of Dierential Flatness 102 B Preliminaries of Bernstein Polynomials 108 B.1 Denition of a Bernstein Polynomial 108 B.2 Convex hull property of a Bernstein Polynomial 110 B.3 Representation of a General Polynomial with Bernstein Basis Polynomials 111 B.4 Representation of the Derivative of a Bernstein Polynomial with Bernstein Basis Polynomials 112 References 113 Abstract (in Korean) 119๋ฐ•

    Aerial navigation in obstructed environments with embedded nonlinear model predictive control

    Full text link
    We propose a methodology for autonomous aerial navigation and obstacle avoidance of micro aerial vehicles (MAV) using nonlinear model predictive control (NMPC) and we demonstrate its effectiveness with laboratory experiments. The proposed methodology can accommodate obstacles of arbitrary, potentially non-convex, geometry. The NMPC problem is solved using PANOC: a fast numerical optimization method which is completely matrix-free, is not sensitive to ill conditioning, involves only simple algebraic operations and is suitable for embedded NMPC. A C89 implementation of PANOC solves the NMPC problem at a rate of 20Hz on board a lab-scale MAV. The MAV performs smooth maneuvers moving around an obstacle. For increased autonomy, we propose a simple method to compensate for the reduction of thrust over time, which comes from the depletion of the MAV's battery, by estimating the thrust constant

    Model Predictive Control for Micro Aerial Vehicles: A Survey

    Full text link
    This paper presents a review of the design and application of model predictive control strategies for Micro Aerial Vehicles and specifically multirotor configurations such as quadrotors. The diverse set of works in the domain is organized based on the control law being optimized over linear or nonlinear dynamics, the integration of state and input constraints, possible fault-tolerant design, if reinforcement learning methods have been utilized and if the controller refers to free-flight or other tasks such as physical interaction or load transportation. A selected set of comparison results are also presented and serve to provide insight for the selection between linear and nonlinear schemes, the tuning of the prediction horizon, the importance of disturbance observer-based offset-free tracking and the intrinsic robustness of such methods to parameter uncertainty. Furthermore, an overview of recent research trends on the combined application of modern deep reinforcement learning techniques and model predictive control for multirotor vehicles is presented. Finally, this review concludes with explicit discussion regarding selected open-source software packages that deliver off-the-shelf model predictive control functionality applicable to a wide variety of Micro Aerial Vehicle configurations

    Optimal Control of Multiple Quadrotors for Transporting a Cable Suspended Payload

    Get PDF
    In this thesis, the main aim is to improve the flight control performance for a cable suspended payload with single and two quadrotors based on optimised control techniques. The study utilised optimal controllers, such as the Linear Quadratic Regulator LQR, the Iterative based LQR (ILQR), the Model Predictive Control MPC and the dynamic game controller to solve tracking control problems in terms of stabilisation, accuracy, constraints and collision avoidance. The LQR control was applied to the system as the first control method and compared with the classical Proportional-Derivative controller PD. It was used to achieve the load path tracking performance for single and two quadrotors with a cable slung load. The second controller was ILQR, which was developed based on the LQR control method to deal with the model nonlinearity. The MPC technique was also applied to the linearised nonlinear model LMPC of two quadrotors with a payload suspended by cables and compared with a nonlinear MPC (NMPC). Both MPC controllers LMPC and NMPC considered the constraints imposed on the system states and control inputs. The dynamic game control method was developed based on an incentive strategy for a leader-follower framework with the consideration of different optimal cost functions. It was applied to the linearised nonlinear model. Selecting these control techniques led to a number of achievements. Firstly, they improved the system performance in terms of achieving the system stability and reducing the steady-state errors. Secondly, the system parameter uncertainties were taken into consideration by utilising the ILQR controller. Thirdly, the MPC controllers guaranteed the handling of constraints and external disturbances in linear and nonlinear systems. Finally, avoiding collision between the leader and follower robots was achieved by applying the dynamic game controller. The controllers were tested in MATLAB simulation and verified for various desired predefined trajectories. In real experiments, these controllers were used as high-level controllers, which produce the optimised trajectory points. Then a low-level controller (PD controller) was used to follow the optimised trajectory points

    ๋ชจ์…˜ ํ”„๋ฆฌ๋จธํ‹ฐ๋ธŒ๋ฅผ ์ด์šฉํ•œ ๋ณต์žกํ•œ ๋กœ๋ด‡ ์ž„๋ฌด ํ•™์Šต ๋ฐ ์ผ๋ฐ˜ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ•ญ๊ณต์šฐ์ฃผ๊ณตํ•™๊ณผ, 2020. 8. ๊น€ํ˜„์ง„.Learning from demonstrations (LfD) is a promising approach that enables robots to perform a specific movement. As robotic manipulations are substituting a variety of tasks, LfD algorithms are widely used and studied for specifying the robot configurations for the various types of movements. This dissertation presents an approach based on parametric dynamic movement primitives (PDMP) as a motion representation algorithm which is one of relevant LfD techniques. Unlike existing motion representation algorithms, this work not only represents a prescribed motion but also computes the new behavior through a generalization of multiple demonstrations in the actual environment. The generalization process uses Gaussian process regression (GPR) by representing the nonlinear relationship between the PDMP parameters that determine motion and the corresponding environmental variables. The proposed algorithm shows that it serves as a powerful optimal and real-time motion planner among the existing planning algorithms when optimal demonstrations are provided as dataset. In this dissertation, the safety of motion is also considered. Here, safety refers to keeping the system away from certain configurations that are unsafe. The safety criterion of the PDMP internal parameters are computed to check the safety. This safety criterion reflects the new behavior computed through the generalization process, as well as the individual motion safety of the demonstration set. The demonstrations causing unsafe movement are identified and removed. Also, the demolished demonstrations are replaced by proven demonstrations upon this criterion. This work also presents an extension approach reducing the number of required demonstrations for the PDMP framework. This approach is effective where a single mission consists of multiple sub-tasks and requires numerous demonstrations in generalizing them. The whole trajectories in provided demonstrations are segmented into multiple sub-tasks representing unit motions. Then, multiple PDMPs are formed independently for correlated-segments. The phase-decision process determines which sub-task and associated PDMPs to be executed online, allowing multiple PDMPs to be autonomously configured within an integrated framework. GPR formulations are applied to obtain execution time and regional goal configuration for each sub-task. Finally, the proposed approach and its extension are validated with the actual experiments of mobile manipulators. The first two scenarios regarding cooperative aerial transportation demonstrate the excellence of the proposed technique in terms of quick computation, generation of efficient movement, and safety assurance. The last scenario deals with two mobile manipulations using ground vehicles and shows the effectiveness of the proposed extension in executing complex missions.์‹œ์—ฐ ํ•™์Šต ๊ธฐ๋ฒ•(Learning from demonstrations, LfD)์€ ๋กœ๋ด‡์ด ํŠน์ • ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ์œ ๋งํ•œ ๋™์ž‘ ์ƒ์„ฑ ๊ธฐ๋ฒ•์ด๋‹ค. ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ๊ฐ€ ์ธ๊ฐ„ ์‚ฌํšŒ์—์„œ ๋‹ค์–‘ํ•œ ์—…๋ฌด๋ฅผ ๋Œ€์ฒดํ•ด ๊ฐ์— ๋”ฐ๋ผ, ๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด LfD ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ , ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ LfD ๊ธฐ๋ฒ• ์ค‘ ๋ชจ์…˜ ํ”„๋ฆฌ๋จธํ‹ฐ๋ธŒ ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ์žฌ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Parametric dynamic movement primitives(PDMP)์— ๊ธฐ์ดˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋ฐ”์ผ ์กฐ์ž‘๊ธฐ์˜ ๊ถค์ ์„ ์ƒ์„ฑํ•œ๋‹ค. ๊ธฐ์กด์˜ ๋™์ž‘ ์žฌ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋‹ฌ๋ฆฌ, ์ด ์—ฐ๊ตฌ๋Š” ์ œ๊ณต๋œ ์‹œ์—ฐ์—์„œ ํ‘œํ˜„๋œ ๋™์ž‘์„ ๋‹จ์ˆœํžˆ ์žฌ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์— ๊ทธ์น˜์ง€ ์•Š๊ณ , ์ƒˆ๋กœ์šด ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ์ผ๋ฐ˜ํ™” ํ•˜๋Š” ๊ณผ์ •์„ ํฌํ•จํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•˜๋Š” ์ผ๋ฐ˜ํ™” ๊ณผ์ •์€ PDMPs์˜ ๋‚ด๋ถ€ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์ธ ์Šคํƒ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๊ฐ€์šฐ์Šค ํšŒ๊ท€ ๊ธฐ๋ฒ• (Gaussian process regression, GPR)์„ ์ด์šฉํ•˜์—ฌ ์ˆ˜์‹์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋˜ํ•œ ์ตœ์  ์‹œ์—ฐ๋ฅผ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ๊ฐ•๋ ฅํ•œ ์ตœ์  ์‹ค์‹œ๊ฐ„ ๊ฒฝ๋กœ ๊ณ„ํš ๊ธฐ๋ฒ•์œผ๋กœ๋„ ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋˜ํ•œ ๋กœ๋ด‡์˜ ๊ตฌ๋™ ์•ˆ์ „์„ฑ๋„ ๊ณ ๋ คํ•œ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์—์„œ ๋‹ค๋ฃจ์–ด์ง„ ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์ด ๋กœ๋ด‡์˜ ๊ตฌ๋™ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ œ์‹œ๋œ ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, ์ด ์—ฐ๊ตฌ๋Š” ๊ฐ•ํ•œ ๊ตฌ์†์กฐ๊ฑด์œผ๋กœ ๋กœ๋ด‡์˜ ๊ตฌ๋™ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ์‹์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ์‹์€ ์Šคํƒ€์ผ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’ ์ƒ์—์„œ ์•ˆ์ „์„ฑ ๊ธฐ์ค€์„ ๊ณ„์‚ฐํ•˜๋ฉฐ, ์ด ์•ˆ์ „ ๊ธฐ์ค€์„ ํ†ตํ•ด ์‹œ์—ฐ์„ ์ œ๊ฑฐํ•˜๋Š” ์ผ๋ จ์˜ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋˜ํ•œ, ์ œ๊ฑฐ๋œ ์‹œ์œ„๋ฅผ ์•ˆ์ „ ๊ธฐ์ค€์— ๋”ฐ๋ผ ์ž…์ฆ๋œ ์‹œ์œ„๋กœ ๋Œ€์ฒดํ•˜์—ฌ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค์ง€ ์•Š๋„๋ก ์‹œ์œ„๋ฅผ ๊ด€๋ฆฌํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์ˆ˜์˜ ์‹œ์—ฐ ๊ฐ๊ฐ ๊ฐœ๋ณ„ ๋™์ž‘ ์•ˆ์ „์„ฑ ๋ฟ ์•„๋‹ˆ๋ผ ์˜จ๋ผ์ธ ๋™์ž‘์˜ ์•ˆ์ „์„ฑ๊นŒ์ง€ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹ค์‹œ๊ฐ„ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ ์šด์šฉ์‹œ ์•ˆ์ „์„ฑ์ด ํ™•๋ณด๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์•ˆ์ •์„ฑ์„ ๊ณ ๋ คํ•œ ์‹œ์—ฐ ๊ด€๋ฆฌ ๊ธฐ์ˆ ์€ ๋˜ํ•œ ํ™˜๊ฒฝ์˜ ์ •์  ์„ค์ •์ด ๋ณ€๊ฒฝ๋˜์–ด ๋ชจ๋“  ์‹œ์—ฐ์„ ๊ต์ฒดํ•ด์•ผ ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์—ฐ๋“ค์„ ํŒ๋ณ„ํ•˜๊ณ , ํšจ์œจ์ ์œผ๋กœ ์žฌ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ์ž„๋ฌด์—์„œ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” PDMPs์˜ ํ™•์žฅ ๊ธฐ๋ฒ•์ธ seg-PDMPs๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ์ ‘๊ทผ๋ฐฉ์‹์€ ๋ณต์žกํ•œ ์ž„๋ฌด๊ฐ€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณต์ˆ˜๊ฐœ์˜ ๊ฐ„๋‹จํ•œ ํ•˜์œ„ ์ž‘์—…์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ๊ธฐ์กด PDMPs์™€ ๋‹ฌ๋ฆฌ seg-PDMPs๋Š” ์ „์ฒด ๊ถค์ ์„ ํ•˜์œ„ ์ž‘์—…์„ ๋‚˜ํƒ€๋‚ด๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋‹จ์œ„ ๋™์ž‘์œผ๋กœ ๋ถ„ํ• ํ•˜๊ณ , ๊ฐ ๋‹จ์œ„๋™์ž‘์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๊ฐœ์˜ PDMPs๋ฅผ ๊ตฌ์„ฑํ•œ๋‹ค. ๊ฐ ๋‹จ์œ„ ๋™์ž‘ ๋ณ„๋กœ ์ƒ์„ฑ๋œ PDMPs๋Š” ํ†ตํ•ฉ๋œ ํ”„๋ ˆ์ž„์›Œํฌ๋‚ด์—์„œ ๋‹จ๊ณ„ ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค๋ฅผ ํ†ตํ•ด ์ž๋™์ ์œผ๋กœ ํ˜ธ์ถœ๋œ๋‹ค. ๊ฐ ๋‹จ๊ณ„ ๋ณ„๋กœ ๋‹จ์œ„ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์‹œ๊ฐ„ ๋ฐ ํ•˜์œ„ ๋ชฉํ‘œ์ ์€ ๊ฐ€์šฐ์Šค ๊ณต์ • ํšŒ๊ท€(GPR)๋ฅผ ์ด์šฉํ•œ ํ™˜๊ฒฝ๋ณ€์ˆ˜์™€์˜์˜ ๊ด€๊ณ„์‹์„ ํ†ตํ•ด ์–ป๋Š”๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ด ์—ฐ๊ตฌ๋Š” ์ „์ฒด์ ์œผ๋กœ ์š”๊ตฌ๋˜๋Š” ์‹œ์—ฐ์˜ ์ˆ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ค„์ผ ๋ฟ ์•„๋‹ˆ๋ผ, ๊ฐ ๋‹จ์œ„๋™์ž‘์˜ ํ‘œํ˜„ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ˜‘๋™ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋œ๋‹ค. ์„ธ ๊ฐ€์ง€์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๊ฐ€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ์–ด์ง€๋ฉฐ, ํ•ญ๊ณต ์šด์†ก๊ณผ ๊ด€๋ จ๋œ ์ฒซ ๋‘ ๊ฐ€์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” PDMPs ๊ธฐ๋ฒ•์ด ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ์—์„œ ๋น ๋ฅธ ์ ์‘์„ฑ, ์ž„๋ฌด ํšจ์œจ์„ฑ๊ณผ ์•ˆ์ „์„ฑ ๋ชจ๋‘ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ์„ ์ž…์ฆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ง€์ƒ ์ฐจ๋Ÿ‰์„ ์ด์šฉํ•œ ๋‘ ๊ฐœ์˜ ๋กœ๋ด‡ ์กฐ์ž‘๊ธฐ์— ๋Œ€ํ•œ ์‹คํ—˜์œผ๋กœ ๋ณต์žกํ•œ ์ž„๋ฌด ์ˆ˜ํ–‰์„ ํ•˜๊ธฐ ์œ„ํ•ด ํ™•์žฅ๋œ ๊ธฐ๋ฒ•์ธ seg-PDMPs๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ผ๋ฐ˜ํ™”๋œ ๋™์ž‘์„ ์ƒ์„ฑํ•จ์„ ๊ฒ€์ฆํ•œ๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.2.1 Conventional Motion Planning in Mobile Manipulations 3 1.2.2 Motion Representation Algorithms 5 1.2.3 Safety-guaranteed Motion Representation Algorithms 7 1.3 Research Objectives and Contributions 7 1.3.1 Motion Generalization in Motion Representation Algorithm 9 1.3.2 Motion Generalization with Safety Guarantee 9 1.3.3 Motion Generalization for Complex Missions 10 1.4 Thesis Organization 11 2 Background 12 2.1 DMPs 12 2.2 Mobile Manipulation Systems 13 2.2.1 Single Mobile Manipulation 14 2.2.2 Cooperative Mobile Manipulations 14 2.3 Experimental Setup 17 2.3.1 Test-beds for Aerial Manipulators 17 2.3.2 Test-beds for Robot Manipulators with Ground Vehicles 17 3 Motion Generalization in Motion Representation Algorithm 22 3.1 Parametric Dynamic Movement Primitives 22 3.2 Generalization Process in PDMPs 26 3.2.1 Environmental Parameters 26 3.2.2 Mapping Function 26 3.3 Simulation Results 29 3.3.1 Two-dimensional Hurdling Motion 29 3.3.2 Cooperative Aerial Transportation 30 4 Motion Generalization with Safety Guarantee 36 4.1 Safety Criterion in Style Parameter 36 4.2 Demonstration Management 39 4.3 Simulation Validation 42 4.3.1 Two-dimensional Hurdling Motion 46 4.3.2 Cooperative Aerial Transportation 47 5 Motion Generalization for Complex Missions 51 5.1 Overall Structure of Seg-PDMPs 51 5.2 Motion Segments 53 5.3 Phase-decision Process 54 5.4 Seg-PDMPs for Single Phase 54 5.5 Simulation Results 55 5.5.1 Initial/terminal Offsets 56 5.5.2 Style Generalization 59 5.5.3 Recombination 61 6 Experimental Validation and Results 63 6.1 Cooperative Aerial Transportation 63 6.2 Cooperative Mobile Hang-dry Mission 70 6.2.1 Demonstrations 70 6.2.2 Simulation Validation 72 6.2.3 Experimental Results 78 7 Conclusions 82 Abstract (in Korean) 93Docto

    Modeling, Estimation, and Control of Helicopter Slung Load System

    Get PDF

    Robust Stabilization and Disturbance Rejection for Autonomous Helicopter

    Get PDF

    Data-driven system identification and model predictive control of a multirotor with an unknown suspended payload

    Get PDF
    Thesis (MEng)--Stellenbosch University, 2022.ENGLISH ABSTRACT: This thesis considers the problem of stabilised control for a multirotor with an unknown suspended payload. The swinging payload negatively affects the multirotor flight dynamics by inducing oscillations in the system. An adaptive control architecture is proposed to damp these oscillations and produce stable flight with different unknown payloads. The architecture includes a data-driven system identification method that assumes no prior knowledge of the payload dynamics. This method is demonstrated in simulation and with practical flight data. Model Predictive Control (MPC) is applied for swing damping control and is verified with Hardware-in-the-Loop (HITL) simulations. A parameter estimator and Linear Quadratic Regulator (LQR) is used as a baseline control architecture. The LQR uses a predetermined model of the system, which is completed with estimates of the payload mass and cable length. The newly proposed architecture uses Dynamic Mode Decomposition with Control (DMDc) to estimate a linear state-space model and approximate the dynamics without using a predetermined model. The architecture was also tested with a Hankel Alternative View Of Koopman (HAVOK) algorithm which was extended in this work to account for control. An MPC uses the data-driven model to control the multirotor and damp the payload oscillations. A Simulinkโ„ข simulator was designed and verified with practical data. Within simulations both the baseline and proposed architectures produced near swing-free control with different payload masses and cable lengths. Even with a dynamic payload producing irregular oscillations, both methods achieved stabilised control. Both architectures also showed effective disturbance rejection. Despite the baseline method using an accurate predetermined model, the proposed method produced equal performances without prior knowledge of the dynamics. The baseline performance degraded significantly with a changed multirotor mass because this parameter was not considered as an unknown. In contrast, the proposed method consistently produced good performances. The accuracy of the DMDc models was verified with practical flight data. The proposed control architecture was also demonstrated in HITL simulations. The hardware executed the MPC at the desired frequency, producing near swing-free control within a Gazebo simulator. Overall, it was shown that the proposed control architecture is practically feasible. Without knowledge of the payload dynamics, a data-driven model can be used with MPC for effective swing damping control with a multirotor.AFRIKAANSE OPSOMMING: Hierdie tesis hanteer die probleem van gestabiliseerde beheer vir โ€™n multirotor hommeltuig met โ€™n onbekende hangende loonvrag. Die swaaiende loonvrag beยจฤฑnvloed die vlugdin amika deur ossillasies in die stelsel te veroorsaak. โ€™n Aanpasbare beheerargitektuur word voorgestel om hierdie ossillasies te demp vir stabiele vlugte met verskillende onbekende loonvragte. Die argitektuur maak gebruik van โ€™n datagedrewe stelsel-identifikasiemetode wat geen voorafkennis van die loonvragdinamika gebruik nie. Hierdie metode word in simulasies en met praktiese vlugdata gedemonstreer. Model Voorspellende Beheer (MVB) word toegepas vir swaaidempingsbeheer en word geverifieer met Hardeware-in-die-Lus (HIDL) simulasies. โ€™n Parameter-afskatter en Lineห†ere Kwadratiese Gaussiese (LKG) word in die basislyn beheerargitektuur gebruik. Die LKG gebruik โ€™n voorafbepaalde model van die sisteem wat voltooi word met afskattings van die loonvragmassa en kabellengte. Die nuwe voorgestelde argitektuur gebruik Dinamiese Modus Ontbinding met beheer (DMOb) om โ€™n lineห†ere toestand-ruimte model te bereken en die dinamika af te skat sonder โ€™n voorafbepaalde model. Die argitektuur is ook getoets met โ€™n Hankel Alternatiewe Siening van Koopman (HASK)-algoritme wat in hierdie werk uitgebrei is om beheer in te sluit. โ€™n MVB gebruik die data-gedrewe model om die multirotor te beheer en die loonvrag se ossillasies te demp. โ€™n Simulinkโ„ข-simululeerder is ontwerp en geverifieer met praktiese data. In simulasies het beide die basislyn en voorgestelde argitekture byna-swaaivrye beheer met verskillende loon vragmassas en kabellengtes geproduseer. Selfs met โ€™n dinamiese loonvrag wat onreยจelmatige ossillasies voortbring, het beide metodes gestabiliseerde beheer tot gevolg gehad. Beide ar gitekture het ook effektiewe versteuringsverwerping getoon. Al gebruik die basislynmetode โ€™n akkurate voorafbepaalde model, het die voorgestelde metode gelyke prestasies gelewer sonder voorafkennis van die dinamika. Die basislyn prestasie het aansienlik afgeneem vir โ€™n aangepaste multirotormassa omdat hierdie parameter nie as โ€™n onbekende beskou is nie. Daarteenoor het die voorgestelde metode deurgaans goeie prestasies gelewer. Die akkuraatheid van die DMOb modelle is geverifieer met praktiese vlugdata. Die voorgestelde beheerargitektuur is ook in HIDL-simulasies gedemonstreer. MVB is teen die verlangde frekwensie uitgevoer en het byna-swaaivrye beheer in โ€™n Gazebo-simululeerder gelewer. In die geheel is dit gewys dat die voorgestelde beheerargitektuur prakties uitvoerbaar is. Sonder kennis van die loonvragdinamika kan โ€™n data-gedrewe model met MVB gebruik word vir effektiewe swaaidempingsbeheer met โ€™n multirotor.Master
    corecore