455 research outputs found

    Extremum Seeking Maximum Power Point Tracking for a Stand-Alone and a Grid-Connected Photovoltaic Systems

    Get PDF
    Energy harvesting from solar sources in an attempt to increase efficiency has sparked interest in many communities to develop more energy harvesting applications for renewable energy topics. Advanced technical methods are required to ensure the maximum available power is harnessed from the photovoltaic (PV) system. This dissertation proposed a new discrete-in-time extremum-seeking (ES) based technique for tracking the maximum power point of a photovoltaic array. The proposed method is a true maximum power point tracker that can be implemented with reasonable processing effort on an expensive digital controller. The dissertation presented a stability analysis of the proposed method to guarantee the convergence of the algorithm. Two-types of PV systems were designed and comprehensive framework of control design was considered for a stand-alone and a three-phase grid connected system. Grid-tied systems commonly have a two-stage power electronics interface, which is necessary due to the inherent limitation of the DC-AC (Inverter) power converging stage. However, a one stage converter topology, denoted as Quasi-Z-source inverter (q-ZSI), was selected to interface the PV panel which overcomes the inverter limitations to harvest the maximum available power A powerful control scheme called Model Predictive Control with Finite Set (MPC-FS) was designed to control the grid connected system. The predictive control was selected to achieve a robust controller with superior dynamic response in conjunction with the extremum-seeking algorithm to enhance the system behavior. The proposed method exhibited a better performance in comparison to conventional Maximum Power Point Tracking (MPPT) methods and required less computational effort than the complex mathematical methods

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Hybrid PV-Wind, Micro-Grid Development Using Quasi-Z-Source Inverter Modeling and Control—Experimental Investigation

    Get PDF
    This research work deals with the modeling and control of a hybrid photovoltaic (PV)-Wind micro-grid using Quasi Z-source inverter (QZsi). This inverter has major benefits as it provides better buck/boost characteristics, can regulate the phase angle output, has less harmonic contents, does not require the filter and has high power performance characteristics over the conventional inverter. A single ended primary inductance converter (SEPIC) module used as DC-DC switched power apparatus is employed for maximum power point tracking (MPPT) functions which provide high voltage gain throughout the process. Moreover, a modified power ratio variable step (MPRVS) based perturb & observe (P&O) method has been proposed, as part of the PV MPPT action, which forces the operating point close to the maximum power point (MPP). The proposed controller effectively correlates with the hybrid PV, Wind and battery system and provides integration of distributed generation (DG) with loads under varying operating conditions. The proposed standalone micro grid system is applicable specifically in rural places. The dSPACE real-time hardware platform has been employed to test the proposed micro grid system under varying wind speed, solar irradiation, load cutting and removing conditions etc. The experimental results based on a real-time digital platform, under dynamic conditions, justify the performance of a hybrid PV-Wind micro-grid with Quasi Z-Source inverter topology

    Model predictive control of a microgrid with energy-stored quasi-Z-source cascaded H-bridge multilevel inverter and PV systems

    Get PDF
    This paper presents a new energy management system (EMS) based on model predictive control (MPC) for a microgrid with solar photovoltaic (PV) power plants and a quasi-Z-source cascaded H-bridge multilevel inverter that integrates an energy storage system (ES-qZS-CHBMLI). The system comprises three modules, each with a PV power plant, quasi-impedance network, battery energy storage system (BESS), and voltage source inverter (VSI). Traditional EMS methods focus on distributing the power among the BESSs to balance their state of charge (SOC), operating in charging or discharging mode. The proposed MPC-EMS carries out a multi-objective control for an ES-qZS-CHBMLI topology, which allows an optimized BESS power distribution while meeting the system operator requirements. It prioritizes the charge of the BESS with the lowest SOC and the discharge of the BESS with the highest SOC. Thus, both modes can coexist simultaneously, while ensuring decoupled power control. The MPC-EMS proposed herein is compared with a proportional sharing algorithm based on SOC (SOC-EMS) that pursues the same objectives. The simulation results show an improvement in the control of the power delivered to the grid. The Integral Time Absolute Error, ITAE, achieved with the MPC-EMS for the active and reactive power is 20 % and 4 %, respectively, lower than that obtained with the SOC-EMS. A 1,3 % higher charge for the BESS with the lowest SOC is also registered. Furthermore, an experimental setup based on an OPAL RT-4510 unit and a dSPACE MicroLabBox prototyping unit is implemented to validate the simulation result

    Discrete Model-Predictive-Control-Based Maximum Power Point Tracking for PV Systems:Overview and Evaluation

    Get PDF
    The main objective of this work is to provide an overview and evaluation of discrete model-predictive control (MPC)-based maximum power point tracking (MPPT) for photovoltaic systems. A large number of MPC-based MPPT methods have been recently introduced in the literature with very promising performance; however, an in-depth investigation and comparison of these methods has not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC-based MPPT methods applied to various common power converter topologies. The performance of MPC-based MPPT is directly linked with the converter topology, and it is also affected by the accurate determination of the converter parameters; sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers is assessed according to the EN 50530 standard, using detailed simulation models, and validated by experimental tests. The analysis in this work aims to present useful insight for practicing engineers and academic researchers when selecting the maximum power point tracker for their application.</p

    Model Predictive Control of Impedance Source Inverter for Photovoltaic Applications

    Get PDF
    A model predictive controlled power electronics interface (PEI) based on impedance source inverter for photovoltaic (PV) applications is proposed in this disssertation. The proposed system has the capability of operation in both grid-connected and islanded mode. Firstly, a model predictive based maximum power point tracking (MPPT) method is proposed for PV applications based on single stage grid-connected Z-source inverter (ZSI). This technique predicts the future behavior of the PV side voltage and current using a digital observer that estimates the parameters of the PV module. Therefore, by predicting a priori the behavior of the PV module and its corresponding effects on the system, it improves the control efficacy. The proposed method adaptively updates the perturbation size in the PV voltage using the predicted model of the system to reduce oscillations and increase convergence speed. The experimental results demonstrate fast dynamic response to changes in solar irradiance level, small oscillations around maximum power point at steady-state, and high MPPT effectiveness from low to high solar irradiance level. The second part of this work focuses on the dual-mode operation of the proposed PEI based on ZSI with capability to operate in islanded and grid-connected mode. The transition from islanded to grid-connected mode and vice versa can cause significant deviation in voltage and current due to mismatch in phase, frequency, and amplitude of voltages. The proposed controller using MPC offers seamless transition between the two modes of operations. The main predictive controller objectives are decoupled power control in grid-connected mode and load voltage regulation in islanded mode. The proposed direct decoupled active and reactive power control in grid connected mode enables the dual-mode ZSI to behave as a power conditioning unit for ancillary services such as reactive power compensation. The proposed controller features simplicity, seamless transition between modes of operations, fast dynamic response, and small tracking error in steady state condition of controller objectives. The operation of the proposed system is verified experimentally. The final part of this dissertation focuses on the low voltage ride through (LVRT) capability of the proposed PV systems during grid faults such as voltage sag. In normal grid condition mode, the maximum available power from the PV panels is injected into the grid. In this mode, the system can provide reactive power compensation as a power conditioning unit for ancillary services from DG systems to main ac grid. In case of grid faults, the proposed system changes the behavior of reactive power injection into the grid for LVRT operation according to the grid requirements. Thus, the proposed controller for ZSI is taking into account both the power quality issues and reactive power injection under abnormal grid conditions

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Strujno prediktivno upravljanje mrežnim H-mosnim izmjenjivačem

    Get PDF
    This paper presents a grid-tied cascade H-bridge inverter with predictive current control technique. The proposed 15-level cascade inverter consists of three H-bridge inverters with separated DC sources. At the output of the cascade inverter an L filter is used as a grid filter. The cascade inverter is controlled by the mean of RT-Lab. The predictive current regulator and one-phase synchronous reference frame PLL are designed with help of Rapid Control Prototyping. The proposed control method uses a discrete model of the system to predict behavior of the system for each of 15 voltage levels of inverter output voltage. Verification by simulation and on a laboratory model is described.U ovom radu prikazan je kaskadni mrežni izmjenjivač u H-mostu sa strujnim prediktivnim upravljanjem. Predloženi 15-razinski kaskadni izmjenjivač sadrži tri H-mosna izmjenjivača s odvojenim DC izvorima. Na izlazu kaskadnog izmjenjivača dodan je induktivni mrežni filter. Kaskadni izmjenjivač upravlja se korištenjem RT-Lab programskog okruženja. Strujni prediktivni regulator i jednofazni PLL poravnat sa sinkronim koordinatnim sustavom dizajnirani su uz pomoć Rapid Control Prototyping metode. Predložena metoda upravljanja koristi diskretni model sustava za predikciju ponašanja sustava u svakom od 15 naponskih razina izlaznog napona izmjenjivača. Upravljanje je provjereno na simulacijskom modelu sustava i laboratorijskom postavu
    corecore