205 research outputs found

    The effect of neuromodulators on cognitive control

    Get PDF

    Cognitive control, motivation and fatigue: A cognitive neuroscience perspective

    Get PDF

    Cognitive control, motivation and fatigue: A cognitive neuroscience perspective

    Get PDF

    The neural basis of self-control

    Get PDF

    A model of proactive and reactive cognitive control with anterior cingulate cortex and the neuromodulatory system

    Get PDF
    Abstract Proactive and reactive cognitive control are often associated with anterior cingulate cortex (ACC). How ACC affects processing in other brain areas, however, is often not explicitly delineated. In this work, we describe a model of how ACC computes measures of conflict and surprise that are in turn relayed to the basal forebrain (BF) and locus coeruleus (LC) in that order. BF and LC signals then respectively sharpen posterior cortical processing and trigger the reframing of prefrontal cortical decision-making frames. We implemented this theory in a large-scale neurocognitive model that performs simulated geospatial intelligence tasks. Experiments demonstrate improved performance while minimizing additional processing. Alternate interpretations of neuromodulatory signals are also discussed.

    The acute effects of mental fatigue on balance performance in healthy young and older adults:A systematic review and meta-analysis

    Get PDF
    Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive

    Decision Making: The Neuroethological Turn

    Get PDF
    Neuroeconomics applies models from economics and psychology to inform neurobiological studies of choice. This approach has revealed neural signatures of concepts like value, risk, and ambiguity, which are known to influence decision making. Such observations have led theorists to hypothesize a single, unified decision process that mediates choice behavior via a common neural currency for outcomes like food, money, or social praise. In parallel, recent neuroethological studies of decision making have focused on natural behaviors like foraging, mate choice, and social interactions. These decisions strongly impact evolutionary fitness and thus are likely to have played a key role in shaping the neural circuits that mediate decision making. This approach has revealed a suite of computational motifs that appear to be shared across a wide variety of organisms. We argue that the existence of deep homologies in the neural circuits mediating choice may have profound implications for understanding human decision making in health and disease

    Affective Neuronal Selection: The Nature of the Primordial Emotion Systems

    Get PDF
    Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested

    Allocation of Computational Resources in the Nervous System.

    Get PDF
    The nervous system integrates past information together with predictions about the future in order to produce rewarding actions for the organism. This dissertation focuses on the resources underlying these computations, and the task-dependent allocation of these resources. We present evidence that principles from optimal coding and optimal estimation account for overt and covert orienting phenomena, as observed from both behavioral experiments and neuronal recordings. First, we review behavioral measurements related to selective attention and discuss models that account for these data. We show that reallocation of resources emerges as a natural property of systems that encode their inputs efficiently under non-uniform constraints. We continue by discussing the attentional modulation of neuronal activity, and showthat: (1) Modulation of coding strategies does not require special mechanisms: it is possible to obtain dramatic modulation even when signals informing the system about fidelity requirements enter the system in a fashion indistinguishable from sensory signals. (2) Optimal coding under non-uniform fidelity requirements is sufficient to account for the firing rate modulation observed during selective attention experiments. (3) The response of a single neuron cannot bewell characterized by measurements of attentional modulation of only a single sensory stimulus. (4) The magnitude of the activity modulation depends on the capacity of the neural circuit. A later chapter discusses the neural mechanisms for resource allocation, and the relation between attentional mechanisms and receptive field formation. The remainder of the dissertation focuses on overt orienting phenomena and active perception. We present a theoretical analysis of the allocation of resources during state estimation of multiple targets with different uncertainties, together with eye-tracking experiments that confirm our predictions. We finish by discussing the implications of these results to our current understanding of orienting phenomena and the neural code
    corecore