1,068 research outputs found

    Model of tactile sensors using soft contacts and its application in robot grasping simulation

    Get PDF
    In the context of robot grasping and manipulation, realistic dynamic simulation requires accurate modeling of contacts between bodies and, in a practical level, accurate simulation of touch sensors. This paper addresses the problem of creating a simulation of a tactile sensor as well as its implementation in a simulation environment. The simulated tactile sensor model utilizes collision detection and response methods using soft contacts as well as a full friction description. The tactile element is created based on a geometry enabling the creation of a variety of different shape tactile sensors. The tactile sensor element can be used to detect touch against triangularized geometries. This independence in shape enables the use of the sensor model for various applications, ranging from regular tactile sensors to more complex geometries as the human hand which makes it possible to explore human-like touch. The developed tactile sensor model is implemented within OpenGRASP and is available in the open-source plugin. The model has been validated through several experiments ranging from physical properties verification to testing on robot grasping applications. This simulated sensor can provide researchers with a valuable tool for robotic grasping research, especially in cases where the real sensors are not accurate enough yet

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Tactile Perception And Visuotactile Integration For Robotic Exploration

    Get PDF
    As the close perceptual sibling of vision, the sense of touch has historically received less than deserved attention in both human psychology and robotics. In robotics, this may be attributed to at least two reasons. First, it suffers from the vicious cycle of immature sensor technology, which causes industry demand to be low, and then there is even less incentive to make existing sensors in research labs easy to manufacture and marketable. Second, the situation stems from a fear of making contact with the environment, avoided in every way so that visually perceived states do not change before a carefully estimated and ballistically executed physical interaction. Fortunately, the latter viewpoint is starting to change. Work in interactive perception and contact-rich manipulation are on the rise. Good reasons are steering the manipulation and locomotion communities’ attention towards deliberate physical interaction with the environment prior to, during, and after a task. We approach the problem of perception prior to manipulation, using the sense of touch, for the purpose of understanding the surroundings of an autonomous robot. The overwhelming majority of work in perception for manipulation is based on vision. While vision is a fast and global modality, it is insufficient as the sole modality, especially in environments where the ambient light or the objects therein do not lend themselves to vision, such as in darkness, smoky or dusty rooms in search and rescue, underwater, transparent and reflective objects, and retrieving items inside a bag. Even in normal lighting conditions, during a manipulation task, the target object and fingers are usually occluded from view by the gripper. Moreover, vision-based grasp planners, typically trained in simulation, often make errors that cannot be foreseen until contact. As a step towards addressing these problems, we present first a global shape-based feature descriptor for object recognition using non-prehensile tactile probing alone. Then, we investigate in making the tactile modality, local and slow by nature, more efficient for the task by predicting the most cost-effective moves using active exploration. To combine the local and physical advantages of touch and the fast and global advantages of vision, we propose and evaluate a learning-based method for visuotactile integration for grasping

    Sense, Think, Grasp: A study on visual and tactile information processing for autonomous manipulation

    Get PDF
    Interacting with the environment using hands is one of the distinctive abilities of humans with respect to other species. This aptitude reflects on the crucial role played by objects\u2019 manipulation in the world that we have shaped for us. With a view of bringing robots outside industries for supporting people during everyday life, the ability of manipulating objects autonomously and in unstructured environments is therefore one of the basic skills they need. Autonomous manipulation is characterized by great complexity especially regarding the processing of sensors information to perceive the surrounding environment. Humans rely on vision for wideranging tridimensional information, prioprioception for the awareness of the relative position of their own body in the space and the sense of touch for local information when physical interaction with objects happens. The study of autonomous manipulation in robotics aims at transferring similar perceptive skills to robots so that, combined with state of the art control techniques, they could be able to achieve similar performance in manipulating objects. The great complexity of this task makes autonomous manipulation one of the open problems in robotics that has been drawing increasingly the research attention in the latest years. In this work of Thesis, we propose possible solutions to some key components of autonomous manipulation, focusing in particular on the perception problem and testing the developed approaches on the humanoid robotic platform iCub. When available, vision is the first source of information to be processed for inferring how to interact with objects. The object modeling and grasping pipeline based on superquadric functions we designed meets this need, since it reconstructs the object 3D model from partial point cloud and computes a suitable hand pose for grasping the object. Retrieving objects information with touch sensors only is a relevant skill that becomes crucial when vision is occluded, as happens for instance during physical interaction with the object. We addressed this problem with the design of a novel tactile localization algorithm, named Memory Unscented Particle Filter, capable of localizing and recognizing objects relying solely on 3D contact points collected on the object surface. Another key point of autonomous manipulation we report on in this Thesis work is bi-manual coordination. The execution of more advanced manipulation tasks in fact might require the use and coordination of two arms. Tool usage for instance often requires a proper in-hand object pose that can be obtained via dual-arm re-grasping. In pick-and-place tasks sometimes the initial and target position of the object do not belong to the same arm workspace, then requiring to use one hand for lifting the object and the other for locating it in the new position. At this regard, we implemented a pipeline for executing the handover task, i.e. the sequences of actions for autonomously passing an object from one robot hand on to the other. The contributions described thus far address specific subproblems of the more complex task of autonomous manipulation. This actually differs from what humans do, in that humans develop their manipulation skills by learning through experience and trial-and-error strategy. Aproper mathematical formulation for encoding this learning approach is given by Deep Reinforcement Learning, that has recently proved to be successful in many robotics applications. For this reason, in this Thesis we report also on the six month experience carried out at Berkeley Artificial Intelligence Research laboratory with the goal of studying Deep Reinforcement Learning and its application to autonomous manipulation
    corecore