71,064 research outputs found

    Optimal irrigation water allocation using a genetic algorithm under various weather conditions

    Get PDF
    Growing water scarcity, due to growing populations and varying natural conditions, puts pressure on irrigation systems, which often are the main consumptive water users. Therefore, water resources management to improve the allocation of limited water supplies is essential. In this study, a non-linear programming optimization model with an integrated soil/water balance is developed to determine the optimal reservoir release policies and the optimal cropping pattern around Doroudzan Dam in the South-West of Iran. The proposed model was solved using a genetic algorithm (GA). Four weather conditions were identified by combining the probability levels of rainfall, evapotranspiration and inflow. Moreover, two irrigation strategies, full irrigation and deficit irrigation were modeled under each weather condition. The results indicate that for all weather conditions the total farm income and the total cropped area under deficit irrigation were larger than those under full irrigation. In addition, our results show that when the weather conditions and the availability of water changes the optimal area under corn and sugar beet decreases sharply. In contrast, the change in area cropped with wheat is small. It is concluded that the optimization approach has been successfully applied to Doroudzan Dam region. Thus, decision makers and water authorities can use it as an effective tool for such large and complex irrigation planning problems

    Beyond Biomass: Valuing Genetic Diversity in Natural Resource Management

    Get PDF
    Strategies for increasing production of goods from working and natural systems have raised concerns that the diversity of species on which these services depend may be eroding. This loss of natural capital threatens to homogenize global food supplies and compromise the stability of human welfare. We assess the trade off between artificial augmentation of biomass and degradation of biodiversity underlying a populations' ability to adapt to shocks. Our application involves the augmentation of wild stocks of salmon. Practices in this system have generated warnings that genetic erosion may lead to a loss of the “portfolio effect” and the value of this loss is not accounted for in decision making. We construct an integrated bioeconomic model of salmon biomass and genetic diversity. Our results show how practices that homogenize natural systems can still generate positive returns. However, the substitution of more physical capital and labor for natural capital must be maintained for gains to persist, weakens the capacity for adaptation should this investment cease, and can cause substantial loss of population wildness. We apply an emerging optimization method—approximate dynamic programming—to solve the model without simplifying restrictions imposed previously

    Mathematical Models in Farm Planning: A Survey

    Get PDF

    Optimizing operations of large-scale water supply networks: a case study

    Get PDF
    In this paper we propose a mathematical programming model for a large drinking water supply network and discuss some possible extensions. The proposed optimization model is of a real water distribution network, the largest water supply network in Flanders. The problem is nonlinear, nonconvex and involves some binary variables, making it belong to the class of NP-hard problems. We discuss a way to convexify the nonconvex term and show some results on two case instances of the actual network

    Optimizing operations of large water supply networks: a case study

    Get PDF
    In this paper we propose a mathematical programming model for a large drinking water supply network and discuss some possible extensions. The proposed optimization model is of a real water distribution network, the largest water supply network in Flanders. The problem is nonlinear, nonconvex and involves some binary variables, making it belong to the class of NP-hard problems. We discuss a way to convexify the nonconvex term and show some results on two case instances of the actual network

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem
    corecore