36 research outputs found

    Micromodel-based simulations for laminated composites

    Get PDF
    International audienceWe develop a calculation strategy for the simulation of a complete microscopic model. This strategy enables one to account for damage mechanisms in laminated composites. The model mixes discrete and continuous approaches by introducing potential rupture surfaces and a damageable continuous medium. This approach requires suitable calculation tools unavailable in industrial analysis codes. The strategy presented is multiscale in space and is based on a decomposition of the domain into substructures and interfaces. This strategy enables one to simulate complex problems with multiple cracks. In practice, to use such a model, the strategy must be improved in order to handle very large numbers of substructures and interfaces and to estimate the rupture criteria for the surfaces introduced into the model. We provide simple examples which demonstrate the capabilities of the microscopic model

    Large scale finite element simulations of polycrystalline aggregates: applications to X-ray diffraction and imaging for fatigue metal behaviour

    No full text
    International audienceLarge scale finite element simulations of the elastoviscoplastic behaviour of polycrystalline aggregates have become a standard technique to study the stress-strain heterogeneities that develop in grains during deformation. For a long time, comparison between continuum crystal plasticity and experimental field measurements was confined to the observation of surface behaviour. As for example the study of the development of intense deformation bands at the free surface of a polycrystal. Recent 3D experimental techniques open new perspectives in computational crystal plasticity. After reviewing how to define a representative volume element for polycrystal properties and showing that actual 3D computations, including grain shapes and orientations, are really needed to accurately determine the stress and strains distributions, two examples of applications of large scale simulations are described in this paper. First the simulation of 3D coherent X-ray diffraction in a polycrystalline gold sample is detailed. Based on the real geometry of the grains and their columnar nature, a 3D avatar is reconstructed. FE computations are then carried out to evaluate the effect of mechanical and thermal strain of the diffraction pattern resolved in the reciprocal space by complex FFT. Qualitative comparison with the experimental diffraction patterns shows that such computations can help understand the true nature of strain heterogeneities within the material. The second example of application deals with short fatigue crack propagation in polycrystals. One fundamental problem caused by short fatigue cracks is that despite decades of research, so far no reliable prediction of the crack propagation rates, comparable to the well-known Paris law in the long crack regime, could be established. This ``anomalous'' behaviour of short cracks is commonly attributed to factors like their complex three dimensional shapes and the influence of the local crystallographic environment affecting their propagation behaviour via a combination of physical mechanisms. Crystal plasticity computations based on the real grain shapes and orientations obtained thanks to diffraction contrast tomography are carried out using an ideal crack shape. The stress concentration at the crack tip is analysed with respect to possible crack growth directions

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    Computational Multiscale Solvers for Continuum Approaches

    Get PDF
    Computational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper.Abengoa Researc

    Computational multiscale solvers for continuum approaches

    Get PDF
    Computational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper

    Advanced materials on the basis of nanostructured catalysed magnesium hydride for hydrogen storage

    Get PDF
    Philosophiae Doctor - PhDMagnesium hydride has long been regarded as a promising candidate for lightweight hydrogen storage applications, owing to reasonably high theoretical capacity (7.6 wt. %). It is burdened by slow absorption/desorption kinetics which has been the target for improvement of many research groups over the years. Nanostructured MgH2 prepared by high energy reactive ball milling (HRBM) of Mg under hydrogen atmosphere with the addition of V or Ti results in modified MgH2 that demonstrates superior hydrogenation/dehydrogenation kinetics without a crippling compromise in storage capacity. Mg – FeV nanocomposites prepared via ball milling of Mg and FeV raw materials demonstrated up to 96.4% of the theoretical storage capacity and comparable kinetics to Mg - V prepared via the same method using pure refined V (which is far costlier than FeV). In both cases, the hydrogenation/dehydrogenation kinetics was much improved than pure Mg alone, as evidenced by faster hydrogenation times. In terms of cyclic stability, Mg – 10FeV demonstrated improvement over pure Mg with final absorption and desorption capacities of 4.93 ± 0.02 wt. % and 4.82 ± 0.02 wt. % respectively over 30 cycles. When compared against Mg – V, Mg – FeV showed slightly inferior improvements, attributed to incomplete hydrogenation of V in the presence of Fe. However, they share similar crystalline BCC, BCT – V2H and FCC - VH phases with the size of less than 10 nm and demonstrated the same behaviour at high temperatures; at temperatures approaching 400 °C, particle sintering became an issue for both nanocomposites resulting in a drop in absorption capacity even in the first cycle. The further inclusion of carbonaceous species showed several effects, one of which was an improvement in hydrogen uptake speed as well as kinetics for the addition of 5 wt. % activated carbon. For the sample with 5 wt. % graphite, the appearance of an initial incubation period of up to 60 minutes was noted, presumably corresponding to the duration of time when the carbon was sheared and crushed before hydrogenation commences

    Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models

    Get PDF
    International audienc
    corecore