8,204 research outputs found

    Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone

    No full text
    The sea occupies three quarters of the area on the earth and provides various kinds of resources to mankind in the form of minerals, food, medicines and even energy. “Seabed exploitation” specifically deals with recovery of the resources that are found on the seabed, in the form of solids, liquids and gasses (methane hydrates, oil and natural gas). The resources are abundant; nevertheless the recovery process from the seabed, poses various challenges to mankind. This study starts with a review on three types of resources: polymetallic manganese nodules, polymetallic manganese crusts and massive sulphides deposits. Each of them are rich in minerals, such as manganese, cobalt, nickel, copper and some rare earth elements. They are found at many locations in the deep seas and are potentially a big source of minerals. No commercial seabed mining activity has been accomplished to date due to the great complexities in recovery. This book describes the various challenges associated with a potential underwater mineral recovery operation, reviews and analyses the existing recovery techniques, and provides an innovative engineering system. It further identifies the associated risks and a suitable business model.Chapter 1 presents a brief background about the past and present industrial trends of seabed mining. A description of the sea, seabed and the three types of seabed mineral resources are also included. A section on motivations for deep sea mining follows which also compares the latter with terrestrial mining.Chapter 2 deals with the decision making process, including a market analysis, for selecting manganese nodules as the resource of interest. This is followed by a case study specific to the location of interest: West COMRA in the Clarion-Clipperton Zone. Specific site location is determined in order to estimate commercial risk, environmental impact assessment and logistic challenge.Chapter 3 lists the existing techniques for nodule recovery operation. The study identifies the main components of a nodules recovery system, and organizes them into: collector, propulsion and vertical transport systems.Chapter 4 discusses various challenges posed by manganese nodules recovery, in terms of the engineering and environment. The geo-political and legal-social issues have also been considered. This chapter plays an important role in defining the proposed engineering system, as addressing the identified challenges will better shape the proposed solution.Chapter 5 proposes an engineering system, by considering the key components in greater details. An innovative component, the black box is introduced, which is intended to be an environmentally-friendly solution for manganese nodules recovery. Other auxiliary components, such as the mother ship and metallurgical processing, are briefly included. A brief power supply analysis is also provided.Chapter 6 assesses the associated risks, which are divided into sections namely commercial viability, logistic challenges, environmental impact assessment and safety assessment. The feasibility of the proposed solution is also dealt with.Chapter 7 provides a business model for the proposed engineering system. Potential customers are identified, value proposition is determined, costumer relation is also suggested. Public awareness is then discussed and finally a SWOT analysis is presented. This business model serves as an important bridge to reach both industry and research institutes.Finally, Chapter 8 provides some conclusions and recommendation for future work

    Automated biowaste sampling system urine subsystem operating model, part 1

    Get PDF
    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem

    Solar array fed synchronous reluctance motor driven water pump : an improved performance under partial shading conditions

    Get PDF
    An improved performance of a photovoltaic (PV) pumping system employing a synchronous reluctance motor (SynRM) under partial shading conditions is proposed. The system does not include the dc-dc converter that is predominantly being utilized for maximizing the output power of the PV array. In addition, storage batteries are also not contained. A conventional inverter connected directly to the PV array is used to drive the SynRM. Further, a control strategy is proposed to drive the inverter so that the maximum output power of the PV array is achieved while the SynRM is working at the maximum torque per Ampere condition. Consequently, this results in an improved system efficiency and cost. Moreover, two maximum power point tracking (MPPT) techniques are compared under uniform and partial shadow irradiation conditions. The first MPPT algorithm is based on the conventional perturbation and observation (P&O) method and the second one uses a differential evolution (DE) optimization technique. It is found that the DE optimization method leads to a higher PV output power than using the P&O method under the partial shadow condition. Hence, the pump flow rate is much higher. However, under a uniform irradiation level, the PV system provides the available maximum power using both MPPT techniques. The experimental measurements are obtained to validate the theoretical work

    Apollo PLSS: Environmental control of the smallest manned space vehicle

    Get PDF
    The production of a portable life support system (PLSS) and associated backup equipment for supporting an astronaut working outside of the lunar module (LM) either in space or on the lunar surface is reported. Described are the system, the philosophy behind its design, basic requirements imposed on the system, and some of the evolutionary processes that led to the present configuration

    Some new results concerning the dynamic behavior of annular turbulent seals

    Get PDF
    The dynamic characteristics of annular turbulent seals applied in high pressure turbopumps can be described by stiffness, damping, and inertia coefficients. An improved procedure is presented for determining these parameters by using measurements made with newly developed test equipment. The dynamic system seal, consisting of the fluid between the cylindrical surfaces of the rotating shaft and the housing, is excited by test forces (input), and the relative motion between the surfaces (output) is measured. Transformation of the input and output time signals into the frequency domain leads to frequency response functions. An analytical model, depending on the seal parameters, is fitted to the measured data in order to identify the dynamic coefficients. Some new results are reported that show the dependencies of these coefficients with respect to the axial and radial Reynolds numbers and the geometrical data of the seal

    Micro hydropower in water distribution systems

    Get PDF
    Considering various applications of Pump as Turbine (PAT) as an effective source of reducing the equipment cost in small hydropower plants as well as the selecting process of appropriate location and suitable machinery are the main concerns of this study. Vary range of PAT settings criteria has been propound by taking into account the State-of-the-Art researches. The purpose of this study is to establish the effectiveness of pump as turbine, considering all the possible obstacles such as producer’s market interests, accessibility of technical information and mechanical limitation. Cutting-edge scientific researches concerning PAT have been proposed by implementation of various approaches. The most challenging criteria of PAT, which is selecting the appropriate machinery, has been investigated subsequently. A comparative methodology to model the effectiveness of PATs, both numerical and experimental, has been developed based on the efficiency. The mechanical reliability of the hydropower devices in situ, prototype and numerical investigation have been reviewed. These results have been obtained through measurements and optimization of the simulated system by means of characteristic methods against the established PAT system in many different case studies. Water Distribution Networks (WDNs) allow to obtain a widespread and globally significant amount of produced energy by exploiting the head drop due to the network pressure control strategy for leak reductions. Replacing PAT in water distribution networks regarding to all the possible obstacles, will reduce the final cost and will improve the expected efficiencies, as much as the reduction of environmental impacts. This study definitively answers the question whether PAT is an effective alternative in WDNs. The comparative approach also aims for a better understanding of the impact of PAT on the transition to renewable energy systems

    Design and test of a pump failure anticipator

    Get PDF
    Tests were conducted on two different types of pumps in order to refine the concept and to finalize design details of a positive displacement internal gear pump and a shroudless centrifugal pump. A concept and a system that could be used with pumps to allow a rapid judgement to be made of the suitability of the pump for futher service is developed. Test results and detailed data analysis are included

    Comparison of different approaches to predict the performance of pumps as turbines (PATs)

    Get PDF
    This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model ("white box" model), two "gray box" models, which integrate theory on turbomachines with specific data correlations, and one "black box" model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53-5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed.This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs). The considered approaches are four, i.e., one physics-based simulation model ("white box" model), two "gray box" models, which integrate theory on turbomachines with specific data correlations, and one "black box" model. More in detail, the modeling approaches are: (1) a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2) a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3) the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4) an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53-5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed
    • …
    corecore