5,759 research outputs found

    Interaction dynamics and autonomy in cognitive systems

    Get PDF
    The concept of autonomy is of crucial importance for understanding life and cognition. Whereas cellular and organismic autonomy is based in the self-production of the material infrastructure sustaining the existence of living beings as such, we are interested in how biological autonomy can be expanded into forms of autonomous agency, where autonomy as a form of organization is extended into the behaviour of an agent in interaction with its environment (and not its material self-production). In this thesis, we focus on the development of operational models of sensorimotor agency, exploring the construction of a domain of interactions creating a dynamical interface between agent and environment. We present two main contributions to the study of autonomous agency: First, we contribute to the development of a modelling route for testing, comparing and validating hypotheses about neurocognitive autonomy. Through the design and analysis of specific neurodynamical models embedded in robotic agents, we explore how an agent is constituted in a sensorimotor space as an autonomous entity able to adaptively sustain its own organization. Using two simulation models and different dynamical analysis and measurement of complex patterns in their behaviour, we are able to tackle some theoretical obstacles preventing the understanding of sensorimotor autonomy, and to generate new predictions about the nature of autonomous agency in the neurocognitive domain. Second, we explore the extension of sensorimotor forms of autonomy into the social realm. We analyse two cases from an experimental perspective: the constitution of a collective subject in a sensorimotor social interactive task, and the emergence of an autonomous social identity in a large-scale technologically-mediated social system. Through the analysis of coordination mechanisms and emergent complex patterns, we are able to gather experimental evidence indicating that in some cases social autonomy might emerge based on mechanisms of coordinated sensorimotor activity and interaction, constituting forms of collective autonomous agency

    SamenMarkt®, a Proposal for Restoring Trust in the Horticultural Fresh Food Market by Using Multi-Agent System Technology

    Get PDF
    In the horticultural fresh food supply chain network in the Netherlands, a crisis is emerging. The market is out of balance and many growers are facing bankruptcy, in the period of 2011–2013, 50% of the growers were not able to pay interest and redemption. Trust between participants in the supply chain network has decreased. This chapter presents the currently not established and identifies design requirements for new systems to address this challenge and provide directions for possible improvement. As a result, this chapter introduces the concept of SamenMarkt®, a participatory system in which multi-agent system technology enables distributed price negotiation, distribution and communication between producers, retailers and consumers. A SWOT analysis of the concept of SamenMarkt® is provided together with a research and development plan in which simulation and emulation create the basis for stakeholder- and participant involvement in the design process of a distributed digital market place. Further research aims to study how SamenMarkt® can provide a solution space for the emerging global food crises. At present, we are using agent-based modelling to simulate the present market and scenarios. The next step will be to build the actual agent-based platform for real-time negotiations and business intelligence

    A Hybrid Simulation Methodology To Evaluate Network Centricdecision Making Under Extreme Events

    Get PDF
    Currently the network centric operation and network centric warfare have generated a new area of research focused on determining how hierarchical organizations composed by human beings and machines make decisions over collaborative environments. One of the most stressful scenarios for these kinds of organizations is the so-called extreme events. This dissertation provides a hybrid simulation methodology based on classical simulation paradigms combined with social network analysis for evaluating and improving the organizational structures and procedures, mainly the incident command systems and plans for facing those extreme events. According to this, we provide a methodology for generating hypotheses and afterwards testing organizational procedures either in real training systems or simulation models with validated data. As long as the organization changes their dyadic relationships dynamically over time, we propose to capture the longitudinal digraph in time and analyze it by means of its adjacency matrix. Thus, by using an object oriented approach, three domains are proposed for better understanding the performance and the surrounding environment of an emergency management organization. System dynamics is used for modeling the critical infrastructure linked to the warning alerts of a given organization at federal, state and local levels. Discrete simulations based on the defined concept of community of state enables us to control the complete model. Discrete event simulation allows us to create entities that represent the data and resource flows within the organization. We propose that cognitive models might well be suited in our methodology. For instance, we show how the team performance decays in time, according to the Yerkes-Dodson curve, affecting the measures of performance of the whole organizational system. Accordingly we suggest that the hybrid model could be applied to other types of organizations, such as military peacekeeping operations and joint task forces. Along with providing insight about organizations, the methodology supports the analysis of the after action review (AAR), based on collection of data obtained from the command and control systems or the so-called training scenarios. Furthermore, a rich set of mathematical measures arises from the hybrid models such as triad census, dyad census, eigenvalues, utilization, feedback loops, etc., which provides a strong foundation for studying an emergency management organization. Future research will be necessary for analyzing real data and validating the proposed methodology

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Advanced Content and Interface Personalization through Conversational Behavior and Affective Embodied Conversational Agents

    Get PDF
    Conversation is becoming one of the key interaction modes in HMI. As a result, the conversational agents (CAs) have become an important tool in various everyday scenarios. From Apple and Microsoft to Amazon, Google, and Facebook, all have adapted their own variations of CAs. The CAs range from chatbots and 2D, carton-like implementations of talking heads to fully articulated embodied conversational agents performing interaction in various concepts. Recent studies in the field of face-to-face conversation show that the most natural way to implement interaction is through synchronized verbal and co-verbal signals (gestures and expressions). Namely, co-verbal behavior represents a major source of discourse cohesion. It regulates communicative relationships and may support or even replace verbal counterparts. It effectively retains semantics of the information and gives a certain degree of clarity in the discourse. In this chapter, we will represent a model of generation and realization of more natural machine-generated output

    Distributed Interactive Surfaces: A step towards the distribution of tangible and virtual objects

    No full text
    International audienceAfter having outlined the uses of new technologies such as smartphones, touchscreen tablets and laptops, in this paper we present the TangiSense interactive table, equipped with RFID technology tagged on tangible objects, as new paradigm of interaction for ambient intelligence. We propose a problem space and some scenarios illustrating the distribution of user interfaces within the framework of collective work. A case study centered on crisis management units, i.e. a collaborative situation, with multiple actors who are geographically separate, makes it possible to illustrate possible distributed uses and the TangiSense's capacities. To finish, the chapter presents the directions under consideration for our future research

    On the Dynamic Evolution of Distributed Computational Aggregates

    Get PDF
    Engineering and programming approaches for collective adaptive systems often leverage ensemble-like abstractions to characterise a subset of devices as a domain for a given task or computation. In this paper, we address the problem of programming the dynamic evolution of distributed computational aggregates, through neighbour-based coordination. This is a problem of interest, since several situated activities (especially in large-scale settings) require decentralised collaboration, and need to be sustained by limited subsets of devices. These subsets may vary dynamically due to delegation, completion of local contributions, exhaustion of resources, failure, or change in the device set induced by the openness of system boundaries. In order to study and develop how distributed aggregates progressively take form by local coordination, we build on the field-based framework of aggregate processes, and extend it with techniques to support more expressive evolution dynamics. We propose novel algorithms for more effective propagation and closure of the boundaries of dynamic aggregates, based on statistics on the information speed and a notion of progressive closure through wave-like propagation. We verify the proposed techniques by simulation of a paradigmatic case study of multihop message delivery in mobile settings, and show increased performance and success rate with respect to previous work

    “You are not my boss!”: Managing inter-organizational collaboration in German ground handling operations

    Get PDF
    While inter-organizational coordination among firms in networks has become a widespread phenomenon and the governance of inter-organizational networks has garnered considerable attention in the management literature, the repercussions of the network form for managing and organizing work remain a considerable gap in the literature. Building on Gittell’s concept of relational coordination, we explore the inter-organizational work collaboration in four German airports’ ground handling operations. By zooming-in on ramp agents’ boundary spanning work role, our comparative study illustrates whether and how a collaboration in inter-organizational work processes is brought about in practice. Our findings reveal the various practices ramp agents deploy in order to handle the tensions emerging from divergent organizational jurisdictions and the requirements for collaboration. We also illuminate how the field-level context influences inter-organizational collaboration by setting conditions such as workload and time restrictions in distributed service delivery
    • …
    corecore