5,254 research outputs found

    Deep Boosting: Joint Feature Selection and Analysis Dictionary Learning in Hierarchy

    Full text link
    This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the image representation with a joint discriminative-generative formulation, i.e. minimization of empirical classification error plus regularization of analysis image generation over training images. For optimization, we perform two iterating steps: i) to minimize the classification error, select the most discriminative features using the gentle adaboost algorithm; ii) according to the feature selection, update the filters to minimize the regularization on analysis image representation using the gradient descent method. Once the optimization is converged, we learn the higher layer representation in the same way. Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential to build very deep architectures. Second, the generated image representation is compact and meaningful. In several visual recognition tasks, our framework outperforms existing state-of-the-art approaches

    Training Skinny Deep Neural Networks with Iterative Hard Thresholding Methods

    Full text link
    Deep neural networks have achieved remarkable success in a wide range of practical problems. However, due to the inherent large parameter space, deep models are notoriously prone to overfitting and difficult to be deployed in portable devices with limited memory. In this paper, we propose an iterative hard thresholding (IHT) approach to train Skinny Deep Neural Networks (SDNNs). An SDNN has much fewer parameters yet can achieve competitive or even better performance than its full CNN counterpart. More concretely, the IHT approach trains an SDNN through following two alternative phases: (I) perform hard thresholding to drop connections with small activations and fine-tune the other significant filters; (II)~re-activate the frozen connections and train the entire network to improve its overall discriminative capability. We verify the superiority of SDNNs in terms of efficiency and classification performance on four benchmark object recognition datasets, including CIFAR-10, CIFAR-100, MNIST and ImageNet. Experimental results clearly demonstrate that IHT can be applied for training SDNN based on various CNN architectures such as NIN and AlexNet

    Behavior Query Discovery in System-Generated Temporal Graphs

    Full text link
    Computer system monitoring generates huge amounts of logs that record the interaction of system entities. How to query such data to better understand system behaviors and identify potential system risks and malicious behaviors becomes a challenging task for system administrators due to the dynamics and heterogeneity of the data. System monitoring data are essentially heterogeneous temporal graphs with nodes being system entities and edges being their interactions over time. Given the complexity of such graphs, it becomes time-consuming for system administrators to manually formulate useful queries in order to examine abnormal activities, attacks, and vulnerabilities in computer systems. In this work, we investigate how to query temporal graphs and treat query formulation as a discriminative temporal graph pattern mining problem. We introduce TGMiner to mine discriminative patterns from system logs, and these patterns can be taken as templates for building more complex queries. TGMiner leverages temporal information in graphs to prune graph patterns that share similar growth trend without compromising pattern quality. Experimental results on real system data show that TGMiner is 6-32 times faster than baseline methods. The discovered patterns were verified by system experts; they achieved high precision (97%) and recall (91%).Comment: The full version of the paper "Behavior Query Discovery in System-Generated Temporal Graphs", to appear in VLDB'1

    The Convergence of Machine Learning and Communications

    Full text link
    The areas of machine learning and communication technology are converging. Today's communications systems generate a huge amount of traffic data, which can help to significantly enhance the design and management of networks and communication components when combined with advanced machine learning methods. Furthermore, recently developed end-to-end training procedures offer new ways to jointly optimize the components of a communication system. Also in many emerging application fields of communication technology, e.g., smart cities or internet of things, machine learning methods are of central importance. This paper gives an overview over the use of machine learning in different areas of communications and discusses two exemplar applications in wireless networking. Furthermore, it identifies promising future research topics and discusses their potential impact.Comment: 8 pages, 4 figure

    Extreme Classification in Log Memory

    Full text link
    We present Merged-Averaged Classifiers via Hashing (MACH) for K-classification with ultra-large values of K. Compared to traditional one-vs-all classifiers that require O(Kd) memory and inference cost, MACH only need O(d log K) (d is dimensionality )memory while only requiring O(K log K + d log K) operation for inference. MACH is a generic K-classification algorithm, with provably theoretical guarantees, which requires O(log K) memory without any assumption on the relationship between classes. MACH uses universal hashing to reduce classification with a large number of classes to few independent classification tasks with small (constant) number of classes. We provide theoretical quantification of discriminability-memory tradeoff. With MACH we can train ODP dataset with 100,000 classes and 400,000 features on a single Titan X GPU, with the classification accuracy of 19.28%, which is the best-reported accuracy on this dataset. Before this work, the best performing baseline is a one-vs-all classifier that requires 40 billion parameters (160 GB model size) and achieves 9% accuracy. In contrast, MACH can achieve 9% accuracy with 480x reduction in the model size (of mere 0.3GB). With MACH, we also demonstrate complete training of fine-grained imagenet dataset (compressed size 104GB), with 21,000 classes, on a single GPU. To the best of our knowledge, this is the first work to demonstrate complete training of these extreme-class datasets on a single Titan X

    Face Recognition: A Novel Multi-Level Taxonomy based Survey

    Full text link
    In a world where security issues have been gaining growing importance, face recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. To help understanding the landscape and abstraction levels relevant for face recognition systems, face recognition taxonomies allow a deeper dissection and comparison of the existing solutions. This paper proposes a new, more encompassing and richer multi-level face recognition taxonomy, facilitating the organization and categorization of available and emerging face recognition solutions; this taxonomy may also guide researchers in the development of more efficient face recognition solutions. The proposed multi-level taxonomy considers levels related to the face structure, feature support and feature extraction approach. Following the proposed taxonomy, a comprehensive survey of representative face recognition solutions is presented. The paper concludes with a discussion on current algorithmic and application related challenges which may define future research directions for face recognition.Comment: This paper is a preprint of a paper submitted to IET Biometrics. If accepted, the copy of record will be available at the IET Digital Librar

    A Mixtures-of-Experts Framework for Multi-Label Classification

    Full text link
    We develop a novel probabilistic approach for multi-label classification that is based on the mixtures-of-experts architecture combined with recently introduced conditional tree-structured Bayesian networks. Our approach captures different input-output relations from multi-label data using the efficient tree-structured classifiers, while the mixtures-of-experts architecture aims to compensate for the tree-structured restrictions and build a more accurate model. We develop and present algorithms for learning the model from data and for performing multi-label predictions on future data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    Fuzziness-based Spatial-Spectral Class Discriminant Information Preserving Active Learning for Hyperspectral Image Classification

    Full text link
    Traditional Active/Self/Interactive Learning for Hyperspectral Image Classification (HSIC) increases the size of the training set without considering the class scatters and randomness among the existing and new samples. Second, very limited research has been carried out on joint spectral-spatial information and finally, a minor but still worth mentioning is the stopping criteria which not being much considered by the community. Therefore, this work proposes a novel fuzziness-based spatial-spectral within and between for both local and global class discriminant information preserving (FLG) method. We first investigate a spatial prior fuzziness-based misclassified sample information. We then compute the total local and global for both within and between class information and formulate it in a fine-grained manner. Later this information is fed to a discriminative objective function to query the heterogeneous samples which eliminate the randomness among the training samples. Experimental results on benchmark HSI datasets demonstrate the effectiveness of the FLG method on Generative, Extreme Learning Machine and Sparse Multinomial Logistic Regression (SMLR)-LORSAL classifiers.Comment: 13 pages, 7 figure

    Identifying Dwarfs Workloads in Big Data Analytics

    Full text link
    Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we construct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represents one unit of computation, and big data workloads are decomposed into one or more dwarfs. Furthermore, dwarfs workloads rather than vast real workloads are more cost-efficient and representative to evaluate big data systems. In this paper, we extensively investigate six most important or emerging application domains i.e. search engine, social network, e-commerce, multimedia, bioinformatics and astronomy. After analyzing forty representative algorithms, we single out eight dwarfs workloads in big data analytics other than OLAP, which are linear algebra, sampling, logic operations, transform operations, set operations, graph operations, statistic operations and sort
    • …
    corecore