88 research outputs found

    Fault detection and diagnosis for in-vehicle networks

    Get PDF

    Time-sensitive autonomous architectures

    Get PDF
    Autonomous and software-defined vehicles (ASDVs) feature highly complex systems, coupling safety-critical and non-critical components such as infotainment. These systems require the highest connectivity, both inside the vehicle and with the outside world. An effective solution for network communication lies in Time-Sensitive Networking (TSN) which enables high-bandwidth and low-latency communications in a mixed-criticality environment. In this work, we present Time-Sensitive Autonomous Architectures (TSAA) to enable TSN in ASDVs. The software architecture is based on a hypervisor providing strong isolation and virtual access to TSN for virtual machines (VMs). TSAA latest iteration includes an autonomous car controlled by two Xilinx accelerators and a multiport TSN switch. We discuss the engineering challenges and the performance evaluation of the project demonstrator. In addition, we propose a Proof-of-Concept design of virtualized TSN to enable multiple VMs executing on a single board taking advantage of the inherent guarantees offered by TSN

    Model Checking the FlexRay Startup Phase

    Full text link
    This report describes a discrete-time model of the startup phase of a FlexRay network. The startup behaviour of this network is analysed in the presence of several faults. It is shown that in certain cases a faulty node can prevent the network from communicating altogether. One previously unknown scenario is uncovered

    Performance improvements of automobile communication protocols in electromagnetic interference environments

    Get PDF
    Electromagnetic Interference (EMI) is frequently encountered in automobile communication systems due to a large number of inductive nodes used in these systems. This thesis investigates the effects of EMI on two types of automobile communication systems, the Controller Area Network (CAN) and the FlexRay. It also proposes a modified Automatic Repeat reQuest (ARQ) scheme to improve the communication performances in EMI environments --Abstract, page iii

    IoT on Shared Vehicles

    Get PDF
    Nowadays the need of people to have the power to control everything is increasing. Due to the technological evolution together with the Internet of things, this is already possible. In this context, the shared vehicles are a good example. With just one click people can use a vehicle from a vehicle sharing eet anywhere, anytime. During the realization of this project the uMDC was developed. It is a small device capable of managing and controlling di erent types of vehicles, with the main focus being the electric bicycles. As a nal conclusion of the project, the results obtained with the uMDC have proved very attractive. During its integration in the electric bicycles, the system was capable of controlling the bicycle's di erent components, as required for the rst prototype.Hoje em dia, a necessidade das pessoas terem controlo sobre tudo está a aumentar. Devido á evolução tecnológica juntamente com a Internet das coisas, isso já é possível. Neste contexto, os veículos partilhados são um bom exemplo disso. Com um simples clique, as pessoas podem usufruir e uma viatura de uma frota de veículos partilhados em qualquer lugar, a qualquer hora. Durante a realização deste projeto, foi desenvolvido o uMDC. Um pequeno ispositivo capaz de gerir e controlar diferentes tipos de veículos, sendo o foco principal as bicicletas elétricas. No nal deste projeto, os resultados obtidos com o uMDC foram bastante satisfatórios. Durante a sua integração nas bicicletas elétricas, o sistema foi capaz de controlar diferentes componentes das mesmas, como requerido para primeiro protótipo

    Ethernet Over Plastic Optical Fiber for Use in the Control System Network for Automotive Applications

    Get PDF
    Plastic optical fiber (POF) for use in automotive applications is not a new concept and has been used in some vehicles for infotainment media distribution within the Media Oriented Systems Transport protocol. However, the use of POF for the control network’s physical layer is a concept that has not been implemented in automotive applications. Many aspects of a vehicle can be improved by implementing POF as the physical backbone for the control network. Currently, the Controller Area Network (CAN) is used as the primary backbone control network protocol for most automobiles as it is inexpensive and reliable. However, CAN is limited to 500 kbps in most vehicles and is easily accessible. Ethernet may provide the improvements of speed and security needed in today’s feature rich and connected vehicles. The feasibility of implementing Ethernet over POF as the control network for automotive applications is the topic of this research investigation

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF
    corecore