4,294 research outputs found

    Exact Gap Computation for Code Coverage Metrics in ISO-C

    Full text link
    Test generation and test data selection are difficult tasks for model based testing. Tests for a program can be meld to a test suite. A lot of research is done to quantify the quality and improve a test suite. Code coverage metrics estimate the quality of a test suite. This quality is fine, if the code coverage value is high or 100%. Unfortunately it might be impossible to achieve 100% code coverage because of dead code for example. There is a gap between the feasible and theoretical maximal possible code coverage value. Our review of the research indicates, none of current research is concerned with exact gap computation. This paper presents a framework to compute such gaps exactly in an ISO-C compatible semantic and similar languages. We describe an efficient approximation of the gap in all the other cases. Thus, a tester can decide if more tests might be able or necessary to achieve better coverage.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A path-precise analysis for property synthesis

    Get PDF
    technical reportRecent systems such as SLAM, Metal, and ESP help programmers by automating reasoning about the correctness of temporal program properties. This paper presents a technique called property synthesis, which can be viewed as the inverse of property checking. We show that the code for some program properties, such as proper lock acquisition, can be automatically inserted rather than automatically verified. Whereas property checking analyzes a program to verify that property code was inserted correctly, property synthesis analyzes a program to identify where property code should be inserted. This paper describes a path-sensitive analysis that is precise enough to synthesize property code effectively. Unlike other path-sensitive analyses, our intra-procedural path-precise analysis can describe behavior that occurs in loops without approximations. This precision is achieved by computing analysis results as a set of path machines. Each path machine describes assignment behavior of a boolean variable along all paths precisely. This paper explains how path machines work, are computed, and are used to synthesize code

    Provably Correct Control-Flow Graphs from Java Programs with Exceptions

    Get PDF
    We present an algorithm to extract flow graphs from Java bytecode, focusing on exceptional control flows. We prove its correctness, meaning that the behaviour of the extracted control-flow graph is an over-approximation of the behaviour of the original program. Thus any safety property that holds for the extracted control-flow graph also holds for the original program. This makes control-flow graphs suitable for performing different static analyses. For precision and efficiency, the extraction is performed in two phases. In the first phase the program is transformed into a BIR program, where BIR is a stack-less intermediate representation of Java bytecode; in the second phase the control-flow graph is extracted from the BIR representation. To prove the correctness of the two-phase extraction, we also define a direct extraction algorithm, whose correctness can be proven immediately. Then we show that the behaviour of the control-flow graph extracted via the intermediate representation is an over-approximation of the behaviour of the directly extracted graphs, and thus of the original program

    Dynamic data flow testing

    Get PDF
    Data flow testing is a particular form of testing that identifies data flow relations as test objectives. Data flow testing has recently attracted new interest in the context of testing object oriented systems, since data flow information is well suited to capture relations among the object states, and can thus provide useful information for testing method interactions. Unfortunately, classic data flow testing, which is based on static analysis of the source code, fails to identify many important data flow relations due to the dynamic nature of object oriented systems. This thesis presents Dynamic Data Flow Testing, a technique which rethinks data flow testing to suit the testing of modern object oriented software. Dynamic Data Flow Testing stems from empirical evidence that we collect on the limits of classic data flow testing techniques. We investigate such limits by means of Dynamic Data Flow Analysis, a dynamic implementation of data flow analysis that computes sound data flow information on program traces. We compare data flow information collected with static analysis of the code with information observed dynamically on execution traces, and empirically observe that the data flow information computed with classic analysis of the source code misses a significant part of information that corresponds to relevant behaviors that shall be tested. In view of these results, we propose Dynamic Data Flow Testing. The technique promotes the synergies between dynamic analysis, static reasoning and test case generation for automatically extending a test suite with test cases that execute the complex state based interactions between objects. Dynamic Data Flow Testing computes precise data flow information of the program with Dynamic Data Flow Analysis, processes the dynamic information to infer new test objectives, which Dynamic Data Flow Testing uses to generate new test cases. The test cases generated by Dynamic Data Flow Testing exercise relevant behaviors that are otherwise missed by both the original test suite and test suites that satisfy classic data flow criteria

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    ACMiner: Extraction and Analysis of Authorization Checks in Android's Middleware

    Get PDF
    Billions of users rely on the security of the Android platform to protect phones, tablets, and many different types of consumer electronics. While Android's permission model is well studied, the enforcement of the protection policy has received relatively little attention. Much of this enforcement is spread across system services, taking the form of hard-coded checks within their implementations. In this paper, we propose Authorization Check Miner (ACMiner), a framework for evaluating the correctness of Android's access control enforcement through consistency analysis of authorization checks. ACMiner combines program and text analysis techniques to generate a rich set of authorization checks, mines the corresponding protection policy for each service entry point, and uses association rule mining at a service granularity to identify inconsistencies that may correspond to vulnerabilities. We used ACMiner to study the AOSP version of Android 7.1.1 to identify 28 vulnerabilities relating to missing authorization checks. In doing so, we demonstrate ACMiner's ability to help domain experts process thousands of authorization checks scattered across millions of lines of code
    • …
    corecore