8,586 research outputs found

    A framework for analyzing RFID distance bounding protocols

    Get PDF
    Many distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unied framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary, and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is nally demonstrated on a study case: Munilla-Peinado distance bounding protocol

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Quarantine region scheme to mitigate spam attacks in wireless sensor networks

    Get PDF
    The Quarantine Region Scheme (QRS) is introduced to defend against spam attacks in wireless sensor networks where malicious antinodes frequently generate dummy spam messages to be relayed toward the sink. The aim of the attacker is the exhaustion of the sensor node batteries and the extra delay caused by processing the spam messages. Network-wide message authentication may solve this problem with a cost of cryptographic operations to be performed over all messages. QRS is designed to reduce this cost by applying authentication only whenever and wherever necessary. In QRS, the nodes that detect a nearby spam attack assume themselves to be in a quarantine region. This detection is performed by intermittent authentication checks. Once quarantined, a node continuously applies authentication measures until the spam attack ceases. In the QRS scheme, there is a tradeoff between the resilience against spam attacks and the number of authentications. Our experiments show that, in the worst-case scenario that we considered, a not quarantined node catches 80 percent of the spam messages by authenticating only 50 percent of all messages that it processe

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure
    corecore