6,863 research outputs found

    DepAnn - An Annotation Tool for Dependency Treebanks

    Full text link
    DepAnn is an interactive annotation tool for dependency treebanks, providing both graphical and text-based annotation interfaces. The tool is aimed for semi-automatic creation of treebanks. It aids the manual inspection and correction of automatically created parses, making the annotation process faster and less error-prone. A novel feature of the tool is that it enables the user to view outputs from several parsers as the basis for creating the final tree to be saved to the treebank. DepAnn uses TIGER-XML, an XML-based general encoding format for both, representing the parser outputs and saving the annotated treebank. The tool includes an automatic consistency checker for sentence structures. In addition, the tool enables users to build structures manually, add comments on the annotations, modify the tagsets, and mark sentences for further revision

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)

    Exploiting Behavioral Hierarchy for Efficient Model Checking

    Get PDF
    Inspired by the success of model checking in hardware and protocol verification, model checking techniques for software have been the focus of a lot of research in the last few years [5,3,2,6]. Model checking can be applied only to relatively small models due to its inherently high computational requirements, and there are two complementary trends to address scalability. The model extraction approach, exemplified by projects such as Bandera [6] and SLAM [3], involves constructing inputs to model checkers by abstracting programs written in languages such as C and Java. The model-based design approach, exemplified by modeling notations such as Statecharts [7], promotes design using high-level models that are compiled into code. Our research agenda is to develop model checking techniques for model-based design of software. Modern software design languages promote hierarchy as one of the key constructs for structuring complex specifications. The input language to our model checker is based on hierarchic reactive modules [1]. This choice was motivated by the fact that, unlike STATECHARTS and other languages, in hierarchic reactive modules, the notion of hierarchy is semantic with an observational trace-based semantics and a notion of refinement with assume-guarantee rules. The first contribution of this paper is the Hermes toolkit that implements hierarchic reactive modules. Our implementation has a visual front-end and XML-based back-end, consistent with modern software design tools, and is in Java. There are two basic techniques for reachability analysis. Enumerative model checkers such as SPIN [8] perform an on-the-fly exploration of the state-space using a depth-first search, while symbolic model checkers such as SMV [9] perform a breadth-first search by manipulating sets of states, rather than individual states, encoded typically by ordered binary (or multi-valued) decision diagrams. Since the two approaches are incomparable, and have been shown to be successful, Hermes supports both enumerative and symbolic reachability analysis. In this paper, we report progress on exploiting the structuring information in the behavioral hierarchy of the input model to speed up the exploration of reachable state-space of the model for both the approaches. More information about the tool is available at http://www.cis.upenn.edu/sdrl/hermes

    Introduction to Iltis: An Interactive, Web-Based System for Teaching Logic

    Full text link
    Logic is a foundation for many modern areas of computer science. In artificial intelligence, as a basis of database query languages, as well as in formal software and hardware verification --- modelling scenarios using logical formalisms and inferring new knowledge are important skills for going-to-be computer scientists. The Iltis project aims at providing a web-based, interactive system that supports teaching logical methods. In particular the system shall (a) support to learn to model knowledge and to infer new knowledge using propositional logic, modal logic and first-order logic, and (b) provide immediate feedback and support to students. This article presents a prototypical system that currently supports the above tasks for propositional logic. First impressions on its use in a second year logic course for computer science students are reported

    Mapping and Displaying Structural Transformations between XML and PDF

    Get PDF
    Documents are often marked up in XML-based tagsets to delineate major structural components such as headings, paragraphs, figure captions and so on, without much regard to their eventual displayed appearance. And yet these same abstract documents, after many transformations and 'typesetting' processes, often emerge in the popular format of Adobe PDF, either for dissemination or archiving. Until recently PDF has been a totally display-based document representation, relying on the underlying PostScript semantics of PDF. Early versions of PDF had no mechanism for retaining any form of abstract document structure but recent releases have now introduced an internal structure tree to create the so called 'Tagged PDF'. This paper describes the development of a plugin for Adobe Acrobat which creates a two-window display. In one window is shown an XML document original and in the other its Tagged PDF counterpart is seen, with an internal structure tree that, in some sense, matches the one seen in XML. If a component is highlighted in either window then the corresponding structured item, with any attendant text, is also highlighted in the other window. Important applications of correctly Tagged PDF include making PDF documents reflow intelligently on small screen devices and enabling them to be read out in correct reading order, via speech synthesiser software, for the visually impaired. By tracing structure transformation from source document to destination one can implement the repair of damaged PDF structure or the adaptation of an existing structure tree to an incrementally updated document

    A framework for requirements engineering for context-aware services

    Get PDF
    Context-aware services, especially when made available to mobile devices, constitute an interesting but very challenging domain. It poses fundamental problems for both requirements engineering, software architecture, and their relationship. We propose a novel, reflection-based framework for requirements engineering for this class of applications. The framework addresses the key difficulties in this field, such as changing context and changing requirements. We report preliminary work on this framework and suggest future directions

    SBML models and MathSBML

    Get PDF
    MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation

    Generating a contract checker for an SLA language

    Get PDF
    SLAng is a language for expressing Service LevelAgreements (SLAs) under development as part of the Europeanproject TAPAS. It is defined using a meta-model, an instance ofthe Meta-Object Facility (MOF) model, in which the relationshipbetween the syntax of the language and its domain of applicationis explicitly represented, and the violation semantics ofthe language defined using Object Constraint Language (OCL)constraints. The concrete syntax of the language is the XMLMeta-data Interchange (XMI) mapping of the syntactic part ofthe meta-model. In this paper we describe how the Java MetadataInterface (JMI) mapping can be applied to the meta-modelof the language to generate interfaces and classes to create andquery SLAs and relevant service monitoring data in memory;and how an OCL interpreter can be applied to check violationconstraints over this data, resulting in the implementation of acontract checker that is highly likely to respect the semantics ofthe language
    corecore