168 research outputs found

    Model checking SystemC designs using timed automata

    Full text link
    SystemC is widely used for modeling and simulation in hard-ware/software co-design. Due to the lack of a complete for-mal semantics, it is not possible to verify SystemC designs. In this paper, we present an approach to overcome this prob-lem by defining the semantics of SystemC by a mapping from SystemC designs into the well-defined semantics of Uppaal timed automata. The informally defined behavior and the structure of SystemC designs are completely preserved in the generated Uppaal models. The resulting Uppaal models allow us to use the Uppaal model checker and the Uppaal tool suite, including simulation and visualization tools. The model checker can be used to verify important properties such as liveness, deadlock freedom or compliance with tim-ing constraints. We have implemented the presented trans-formation, applied it to two examples and verified liveness, safety and timing properties by model checking, thus show-ing the applicability of our approach in practice

    Optimized Transformation and Verification of SystemC Methods

    Get PDF
    Concurrent designs can be automatically verified by transforming them into an automata-based representation and by model checking the resulting model. However, when transforming a concurrent design into an automata-based representation, each method has to be translated into a single automaton. This produces a significant overhead for model checking. In this paper, we present an optimization of our previously proposed transformation from SystemC into Uppaal timed automata. The main idea is that we analyze whether SystemC methods can be executed atomically and then we use the results for generating a reduced automata model. We have implemented the optimized transformation in ourSystemC to Timed Automata Transformation Engine (STATE) and demonstrate the effect of our optimization with experimental results from micro benchmarks, a simple producer-consumer example, and from an Anti-Slip Regulation and Anti-lock Braking System (ASR/ABS)

    An Approach Combining Simulation and Verification for SysML using SystemC and Uppaal

    No full text
    International audienceEnsuring the correction of heterogeneous and complex systems is an essential stage in the process of engineering systems.In this paper we propose a methodology to verify and validate complex systems specified with SysML language using a combination of the two techniques of simulation and verification. We translate SysML specifications into SystemC models to validate the designed systems by simulation, then we propose to verify the derived SystemC models by using the Uppaal model checker. A case study is presented to demonstrate the effectiveness of our approach

    Formal Verification of Probabilistic SystemC Models with Statistical Model Checking

    Full text link
    Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have inherent probabilistic behaviors, e.g., random data and unreliable components. It thus is crucial to have both quantitative and qualitative analysis of the probabilities of system properties. Such analysis can be conducted by constructing a formal model of the system under verification and using Probabilistic Model Checking (PMC). However, this method is infeasible for large systems, due to the state space explosion. In this article, we demonstrate the successful use of Statistical Model Checking (SMC) to carry out such analysis directly from large SystemC models and allow designers to express a wide range of useful properties. The first contribution of this work is a framework to verify properties expressed in Bounded Linear Temporal Logic (BLTL) for SystemC models with both timed and probabilistic characteristics. Second, the framework allows users to expose a rich set of user-code primitives as atomic propositions in BLTL. Moreover, users can define their own fine-grained time resolution rather than the boundary of clock cycles in the SystemC simulation. The third contribution is an implementation of a statistical model checker. It contains an automatic monitor generation for producing execution traces of the model-under-verification (MUV), the mechanism for automatically instrumenting the MUV, and the interaction with statistical model checking algorithms.Comment: Journal of Software: Evolution and Process. Wiley, 2017. arXiv admin note: substantial text overlap with arXiv:1507.0818

    Reusing RTL assertion checkers for verification of SystemC TLM models

    Get PDF
    The recent trend towards system-level design gives rise to new challenges for reusing existing RTL intellectual properties (IPs) and their verification environment in TLM. While techniques and tools to abstract RTL IPs into TLM models have begun to appear, the problem of reusing, at TLM, a verification environment originally developed for an RTL IP is still under-explored, particularly when ABV is adopted. Some frameworks have been proposed to deal with ABV at TLM, but they assume a top-down design and verification flow, where assertions are defined ex-novo at TLM level. In contrast, the reuse of existing assertions in an RTL-to-TLM bottom-up design flow has not been analyzed yet, except by using transactors to create a mixed simulation between the TLM design and the RTL checkers corresponding to the assertions. However, the use of transactors may lead to longer verification time due to the need of developing and verifying the transactors themselves. Moreover, the simulation time is negatively affected by the presence of transactors, which slow down the simulation at the speed of the slowest parts (i.e., RTL checkers). This article proposes an alternative methodology that does not require transactors for reusing assertions, originally defined for a given RTL IP, in order to verify the corresponding TLM model. Experimental results have been conducted on benchmarks with different characteristics and complexity to show the applicability and the efficacy of the proposed methodology

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study

    Modeling and Formal Verification of a Passive Optical Network on Chip Behavior

    Get PDF
    Many of the modern Systems-on-Chip integrate a high density of heterogeneous components such as different processors, a wide range of hardware components, as well as complex interconnects that use different communication protocols. On-chip physical interconnections represent a limiting factor for the performance and energy consumption. Currently, the optical interconnects integrated on chip are a viable alternative for on chip interconnects. However, the access to physical prototyping of these interconnects is a major challenge because this systems require very recent technologies, still difficult to access. Thus, their high-level modeling and validation are mandatory. This paper proposes the modeling and the formal verification for the global validation of the behavior of a passive integrated photonic routing structure using models that are based on timed automata

    Dynamic Assertion-Based Verification for SystemC

    Get PDF
    SystemC has emerged as a de facto standard modeling language for hardware and embedded systems. However, the current standard does not provide support for temporal specifications. Specifically, SystemC lacks a mechanism for sampling the state of the model at different types of temporal resolutions, for observing the internal state of modules, and for integrating monitors efficiently into the model's execution. This work presents a novel framework for specifying and efficiently monitoring temporal assertions of SystemC models that removes these restrictions. This work introduces new specification language primitives that (1) expose the inner state of the SystemC kernel in a principled way, (2) allow for very fine control over the temporal resolution, and (3) allow sampling at arbitrary locations in the user code. An efficient modular monitoring framework presented here allows the integration of monitors into the execution of the model, while at the same time incurring low overhead and allowing for easy adoption. Instrumentation of the user code is automated using Aspect-Oriented Programming techniques, thereby allowing the integration of user-code-level sample points into the monitoring framework. While most related approaches optimize the size of the monitors, this work focuses on minimizing the runtime overhead of the monitors. Different encoding configurations are identified and evaluated empirically using monitors synthesized from a large benchmark of random and pattern temporal specifications. The framework and approaches described in this dissertation allow the adoption of assertion-based verification for SystemC models written using various levels of abstraction, from system level to register-transfer level. An advantage of this work is that many existing specification languages call be adopted to use the specification primitives described here, and the framework can easily be integrated into existing implementations of SystemC
    • …
    corecore