2,355 research outputs found

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    Modeling of Magnetic Resonance Wireless Electric Vehicle Charging

    Get PDF
    Due to the fast-growing market for an electric vehicle, it is necessary that the drawbacks involved in electric vehicle technology should be overcome, therefore introducing a wireless charging technique which is more convenient as battery cost, recharge time and weight has been removed. Different wireless charging techniques for electric vehicles are discussed. This research work investigates the feasibility of wireless power transfer for Electric Vehicles by electromagnetic resonance coupling. Wireless power transfer (WPT) for Electric Vehicles by magnetic resonance coupling is of high priority due to its efficiency, high power transmission, and more considerable charging distance. Simulation results show the energy transfer efficiency between two magnetically coupled resonating coils. However, results show the effects of parameters such as an inductor, capacitor, load and coupling coefficient on efficiency. Additionally, implementation of a closed loop circuit using a three-level cascaded PI controller for the dynamic wireless electric vehicle charging to eliminate the variation of voltage because of varied spacing existing between both coils as the vehicle is in motion and thereby delivering a constant voltage and constant current to the load is carried out. Simulation results and comparison with a single level PI controller indicate the effectiveness of the control method. A fuzzy logic and neuro-fuzzy controller are implemented for the wireless electric vehicle transfer which is seen to be more robust than the PI controller as there is no undershoot in the output voltage. Furthermore, wireless power transfer with three - level cascaded PI controller with MPPT is designed. The proposed system consists of a solar PV array, boost DC/DC converter, inverter, transmitter coil, a receiver coil, rectifier, buck converter, and batteries. The design of the MPPT controller tracks the highest voltage and current from the PV array required to charge a battery in which the highest power point voltage is 61.5 V. The stability analysis for the closed-loop system has been done and the system is asymptotically stable

    電池とスーパーキャパシタを用いた電気自動車用ハイブリッドエネルギー貯蔵システムの研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 堀 洋一, 東京大学教授 大崎 博之, 東京大学教授 古関 隆章, 東京大学准教授 藤本 博志, 東京大学准教授 馬場 旬平University of Tokyo(東京大学

    Energy Storage Systems for Traction and Renewable Energy Applications

    Get PDF
    Energy storage systems are the set of technologies used to store various forms of energy, and by necessity, can be discharged. Energy storage technologies have a wide range of characteristics and specifications. Like any other technology, each type of energy storage has its pros and cons. Depending on the application, it is crucial to perform a tradeoff study between the various energy storage options to choose the optimal solution based on the key performance objectives and various aspects of those technologies. The purpose of this thesis is to present a thorough literature review of the various energy storage options highlighting the key tradeoffs involved. This thesis focuses on evaluating energy storage options for traction and renewable energy applicationsHybrid Electric Vehicles (HEVs) is one key application space driving breakthroughs in energy storage technologies. The focus though has been typically on using one type of energy storage systems. This thesis investigates the impact of combining several types of batteries with ultracapacitor. A case study of integrating two energy storage systems in a series-parallel hybrid electric vehicle is simulated by using MATLAB-SIMULINK software.The other key application space is renewable energy especially wind and solar. Due to the intermittent nature of renewable energy sources, energy storage is a must to achieve the required power quality. Therefore, this thesis aims to investigate different cases of combining different types of energy storage with wind and solar. Hybrid Optimization Model for Electric Renewables (HOMER) software is utilized to study the economic and sizing aspects in each case

    Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    Get PDF

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version
    corecore