234 research outputs found

    Research on Effective Designs and Evaluation for Speech Interface Systems

    Get PDF
    制度:新 ; 報告番号:乙2305号 ; 学位の種類:博士(工学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新564

    Combining pulse-based features for rejecting far-field speech in a HMM-based Voice Activity Detector. Computers & Electrical Engineering (CAEE).

    Full text link
    Nowadays, several computational techniques for speech recognition have been proposed. These techniques suppose an important improvement in real time applications where speaker interacts with speech recognition systems. Although researchers proposed many methods, none of them solve the high false alarm problem when far-field speakers interfere in a human-machine conversation. This paper presents a two-class (speech and non-speech classes) decision-tree based approach for combining new speech pulse features in a VAD (Voice Activity Detector) for rejecting far-field speech in speech recognition systems. This Decision Tree is applied over the speech pulses obtained by a baseline VAD composed of a frame feature extractor, a HMM-based (Hidden Markov Model) segmentation module and a pulse detector. The paper also presents a detailed analysis of a great amount of features for discriminating between close and far-field speech. The detection error obtained with the proposed VAD is the lowest compared to other well-known VAD

    Automatic speech recognition: from study to practice

    Get PDF
    Today, automatic speech recognition (ASR) is widely used for different purposes such as robotics, multimedia, medical and industrial application. Although many researches have been performed in this field in the past decades, there is still a lot of room to work. In order to start working in this area, complete knowledge of ASR systems as well as their weak points and problems is inevitable. Besides that, practical experience improves the theoretical knowledge understanding in a reliable way. Regarding to these facts, in this master thesis, we have first reviewed the principal structure of the standard HMM-based ASR systems from technical point of view. This includes, feature extraction, acoustic modeling, language modeling and decoding. Then, the most significant challenging points in ASR systems is discussed. These challenging points address different internal components characteristics or external agents which affect the ASR systems performance. Furthermore, we have implemented a Spanish language recognizer using HTK toolkit. Finally, two open research lines according to the studies of different sources in the field of ASR has been suggested for future work

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Spatial features of reverberant speech: estimation and application to recognition and diarization

    Get PDF
    Distant talking scenarios, such as hands-free calling or teleconference meetings, are essential for natural and comfortable human-machine interaction and they are being increasingly used in multiple contexts. The acquired speech signal in such scenarios is reverberant and affected by additive noise. This signal distortion degrades the performance of speech recognition and diarization systems creating troublesome human-machine interactions.This thesis proposes a method to non-intrusively estimate room acoustic parameters, paying special attention to a room acoustic parameter highly correlated with speech recognition degradation: clarity index. In addition, a method to provide information regarding the estimation accuracy is proposed. An analysis of the phoneme recognition performance for multiple reverberant environments is presented, from which a confusability metric for each phoneme is derived. This confusability metric is then employed to improve reverberant speech recognition performance. Additionally, room acoustic parameters can as well be used in speech recognition to provide robustness against reverberation. A method to exploit clarity index estimates in order to perform reverberant speech recognition is introduced. Finally, room acoustic parameters can also be used to diarize reverberant speech. A room acoustic parameter is proposed to be used as an additional source of information for single-channel diarization purposes in reverberant environments. In multi-channel environments, the time delay of arrival is a feature commonly used to diarize the input speech, however the computation of this feature is affected by reverberation. A method is presented to model the time delay of arrival in a robust manner so that speaker diarization is more accurately performed.Open Acces

    Modèles de Markov cachés à haute précision dynamique

    Get PDF
    La reconnaissance vocale est une technologie sujette à amélioration. Malgré 40 ans de travaux, de nombreuses applications restent néanmoins hors de portée en raison d'une trop faible efficacité. De façon à pallier à ce problème, l'auteur propose une amélioration au cadre conceptuel classique. Plus précisément, une nouvelle méthode d'entraînement des modèles markoviens cachés est exposée de manière à augmenter la précision dynamique des classificateurs. Le présent document décrit en détail le résultat de trois ans de recherche et les contributions scientifiques qui en sont le produit. L'aboutissement final de cet effort est la production d'un article de journal proposant une nouvelle tentative d'approche à la communauté scientifique internationale. Dans cet article, les auteurs proposent que des topologies finement adaptées de modèles markoviens cachés (HMMs) soient essentielles à une modélisation temporelle de haute précision. Un cadre conceptuel pour l'apprentissage efficace de topologies par élagage de modèles génériques complexes est donc soumis. Des modèles HMM à topologie gauche-à-droite sont d'abord entraînés de façon classique. Des modèles complexes à topologie générique sont ensuite obtenus par écrasement des modèles gauche-à-droite. Finalement, un enchaînement successif d'élagages et d'entraînements Baum-Welch est fait de manière à augmenter la précision temporelle des modèles

    Semi-supervised training for automatic speech recognition

    Get PDF
    State-of-the-art automatic speech recognition (ASR) systems use sequence-level objectives like Connectionist Temporal Classification (CTC) and Lattice-free Maximum Mutual Information (LF-MMI) for training neural network-based acoustic models. These methods are known to be most effective with large size datasets with hundreds or thousands of hours of data. It is difficult to obtain large amounts of supervised data other than in a few major languages like English and Mandarin. It is also difficult to obtain supervised data in a myriad of channel and envirormental conditions. On the other hand, large amounts of unsupervised audio can be obtained fairly easily. There are enormous amounts of unsupervised data available in broadcast TV, call centers and YouTube for many different languages and in many environment conditions. The goal of this research is to discover how to best leverage the available unsupervised data for training acoustic models for ASR. In the first part of this thesis, we extend the Maximum Mutual Information (MMI) training to the semi-supervised training scenario. We show that maximizing Negative Conditional Entropy (NCE) over lattices from unsupervised data, along with state-level Minimum Bayes Risk (sMBR) on supervised data, in a multi-task architecture gives word error rate (WER) improvements without needing any confidence-based filtering. In the second part of this thesis, we investigate using lattice-based supervision as numerator graph to incorporate uncertainities in unsupervised data in the LF-MMI training framework. We explore various aspects of creating the numerator graph including splitting lattices for minibatch training, applying tolerance to frame-level alignments, pruning beam sizes, word LM scale and inclusion of pronunciation variants. We show that the WER recovery rate (WRR) of our proposed approach is 5-10\% absolute better than that of the baseline of using 1-best transcript as supervision, and is stable in the 40-60\% range even on large-scale setups and multiple different languages. Finally, we explore transfer learning for the scenario where we have unsupervised data in a mismatched domain. First, we look at the teacher-student learning approach for cases where parallel data is available in source and target domains. Here, we train a "student" neural network on the target domain to mimic a "teacher" neural network on the source domain data, but using sequence-level posteriors instead of the traditional approach of using frame-level posteriors. We show that the proposed approach is very effective to deal with acoustic domain mismatch in multiple scenarios of unsupervised domain adaptation -- clean to noisy speech, 8kHz to 16kHz speech, close-talk microphone to distant microphone. Second, we investigate approaches to mitigate language domain mismatch, and show that a matched language model significantly improves WRR. We finally show that our proposed semi-supervised transfer learning approach works effectively even on large-scale unsupervised datasets with 2000 hours of audio in natural and realistic conditions

    Combining pulse-based features for rejecting far-field speech in a HMM-based Voice Activity Detector

    Get PDF
    ABSTRACT 1.-Introduction The advantages of using Automatic Speech Recognition are obvious for several types of applications. Speech Recognition becomes difficult when the main speaker is in noisy environments, for example in bars, where many far-field speakers are speaking almost all the time. This factor contributes to a reduction in the speech recognizer success rate that can lead to an unsatisfactory experience for the user. If there are too many recognition mistakes, the user is forced to correct the system which takes too long, it is a nuisance, and the user will finally reject the system. With the purpose of solving this problem a Robust Voice Activity Detector is proposed in this work. The VAD is able to select speech frames (noise frames are discarded). This frame information is sent to the Speech Recognizer and only speech pronunciations are processed, so the VAD tries to avoid Speech Recognizer mistakes coming from noisy frames. If the VAD works well, the Speech Recognizer does too. In summary, it is very common to find, in mobile phone scenarios, many situations in which the target speaker is situated in open environments surrounded by far-field interfering speech from other speakers. In this ambiguous case, VAD systems can detect far-field speech as coming from the user, increasing the speech recognition error rate. Generally, detection errors caused by background voices mainly increase word insertions and substitutions, leading to significant dialogue misunderstandings. This work tries to solve these speech-based application problems in which far-field speech can be wrongly considered as main speaker speech. In [1] a spectrum sensing scheme to detect the presence of the primary user for cognitive radio systems is proposed (very similar to the VAD proposed in this paper) being able to distinguish between main speaker speech and far-field speech. Moreover the system implemented in In several previous works, similar measurements, like those considered in this work, have been used for dereverberation techniques. I
    corecore