8 research outputs found

    Expressing Model Constraints Visually with VMQL

    Get PDF

    Layout Specification on the Concrete and Abstract Syntax Level of a Diagram Language

    Get PDF
    A visual language consists of several visual component types, e.g. states or transitions in DFAs. Nowadays, the language itself is usually specified via a meta model. To make a diagram look nice, a layouter is required. This layouter may either operate on the concrete syntax level, i.e., on the visual components, or on the abstract syntax level, i.e., on the model instance. In this paper we present an approach that is capable of specifying a flexible layout on both, the concrete as well as the abstract syntax level of a diagram. The approach uses pattern-based transformations. Besides structured editing, it also supports free-hand editing, a challenging task for the layouter. We introduce how such a specification can be created and examine the advantages and shortcomings of each of either operating on the concrete syntax level or on the abstract syntax level

    Exploring (Meta-)Model Snapshots by Combining Visual and Textual Techniques

    Get PDF
    One central task in software development by means of graph-based techniques is to inspect and to query the underlying graph. Important issues are, for example, to detect general graph properties like connectivity, to explore more special features like the applicability of left-hand side rules in graph transformations, or to validate snapshots of evolving systems by checking properties in an on-the-fly way. We propose a new approach combining visual and textual techniques for exploring graphs. We emphasize a particular aspect of the underlying graph by showing or hiding nodes and edges. We offer three different ways to explore (meta-)model snapshots which may be combined: (1) selection by object identity and class membership, (2) selection by OCL expression, and (3) selection by path length. One main motivation for our work is to access large or complicated graphs in a systematic way. We evaluate our approach by different middle-sized scenarios. Our evaluation shows that the approach works for large graphs with about 1000 nodes and 2000 edges and for graphs which instantiate metamodels representing software engineering artifacts

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    A formal framework for model management

    Full text link
    El Desarrollo de Software Dirigido por Modelos es una rama de la Ingeniería del Software en la que los artefactos software se representan como modelos para incrementar la productividad, calidady eficiencia económica en el proceso de desarrollo de software, donde un modelo proporciona una representación abstracta del código final de una aplicación. En este campo, la iniciativa Model-Driven Architecture (MDA), patrocinada por la OMG, está constituida por una familia de estándares industriales, entre los que se destacan: Meta-Object Facility (MOF), Unified Modeling Language (UML), Object Constraint Language (OCL), XML Metadata Interchange (XMI), y Query/Views/Transformations (QVT). Estos estándares proporcionan unas directrices comunes para herramientas basadas en modelos y para procesos de desarrollo de software dirigidos por modelos. Su objetivo consiste en mejorar la interoperabilidad entre marcos de trabajo ejecutables, en automatizar el proceso desarrollo de software de software y en proporcionar técnicas que eviten errores durante ese proceso. El estándar MOF describe un marco de trabajo genérico que permite definir la sintaxis abstracta de lenguajes de modelado. Este estándar persigue la definición de los conceptos básicos que son utilizados en procesos de desarrollo de software dirigidos por modelos: que es un modelo, que es un metamodelo, qué es reflexión en un marco de trabajo basado en MOF, etc. Sin embargo, la mayoría de estos conceptos carecen de una semántica formal en la versión actual del estándar MOF. Además, OCL se utiliza como un lenguage de definición de restricciones que permite añadir semántica a un metamodelo MOF. Desafortunadamente, la relación entre un metamodelo y sus restricciones OCL también carece de una semántica formal. Este hecho es debido, en parte, a que los metamodelos solo pueden ser definidos como dato en un marco de trabajo basado en MOF. El estándar MOF también proporciona las llamadas facilidades de reflexión de MOF (MOF ReflectiBoronat Moll, A. (2007). A formal framework for model management [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1964Palanci

    found at the ENTCS Macro Home Page. Model Transformation from VisualOCL to OCL using Graph Transformation

    No full text
    Replace this file with prentcsmacro.sty for your meeting
    corecore