16,623 research outputs found

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Institutionalising Ontology-Based Semantic Integration

    No full text
    We address what is still a scarcity of general mathematical foundations for ontology-based semantic integration underlying current knowledge engineering methodologies in decentralised and distributed environments. After recalling the first-order ontology-based approach to semantic integration and a formalisation of ontological commitment, we propose a general theory that uses a syntax-and interpretation-independent formulation of language, ontology, and ontological commitment in terms of institutions. We claim that our formalisation generalises the intuitive notion of ontology-based semantic integration while retaining its basic insight, and we apply it for eliciting and hence comparing various increasingly complex notions of semantic integration and ontological commitment based on differing understandings of semantics

    The Information-Flow Approach to Ontology-Based Semantic Integration

    No full text
    In this article we argue for the lack of formal foundations for ontology-based semantic alignment. We analyse and formalise the basic notions of semantic matching and alignment and we situate them in the context of ontology-based alignment in open-ended and distributed environments, like the Web. We then use the mathematical notion of information flow in a distributed system to ground three hypotheses that enable semantic alignment. We draw our exemplar applications of this work from a variety of interoperability scenarios including ontology mapping, theory of semantic interoperability, progressive ontology alignment, and situated semantic alignment

    Does the Principle of Compositionality Explain Productivity? For a Pluralist View of the Role of Formal Languages as Models

    Get PDF
    One of the main motivations for having a compositional semantics is the account of the productivity of natural languages. Formal languages are often part of the account of productivity, i.e., of how beings with finite capaci- ties are able to produce and understand a potentially infinite number of sen- tences, by offering a model of this process. This account of productivity con- sists in the generation of proofs in a formal system, that is taken to represent the way speakers grasp the meaning of an indefinite number of sentences. The informational basis is restricted to what is represented in the lexicon. This constraint is considered as a requirement for the account of productivity, or at least of an important feature of productivity, namely, that we can grasp auto- matically the meaning of a huge number of complex expressions, far beyond what can be memorized. However, empirical results in psycholinguistics, and especially particular patterns of ERP, show that the brain integrates informa- tion of different sources very fast, without any felt effort on the part of the speaker. This shows that formal procedures do not explain productivity. How- ever, formal models are still useful in the account of how we get at the seman- tic value of a complex expression, once we have the meanings of its parts, even if there is no formal explanation of how we get at those meanings. A practice-oriented view of modeling gives an adequate interpretation of this re- sult: formal compositional semantics may be a useful model for some ex- planatory purposes concerning natural languages, without being a good model for dealing with other explananda

    Web Service Discovery in a Semantically Extended UDDI Registry: the Case of FUSION

    Get PDF
    Service-oriented computing is being adopted at an unprecedented rate, making the effectiveness of automated service discovery an increasingly important challenge. UDDI has emerged as a de facto industry standard and fundamental building block within SOA infrastructures. Nevertheless, conventional UDDI registries lack means to provide unambiguous, semantically rich representations of Web service capabilities, and the logic inference power required for facilitating automated service discovery. To overcome this important limitation, a number of approaches have been proposed towards augmenting Web service discovery with semantics. This paper discusses the benefits of semantically extending Web service descriptions and UDDI registries, and presents an overview of the approach put forward in project FUSION, towards semantically-enhanced publication and discovery of services based on SAWSDL

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure

    Progressive Ontology Alignment for Meaning Coordination: an Information-Theoretic Foundation

    No full text
    We elaborate on the mathematical foundations of the meaning coordination problem that agents face in open environments. We investigate to which extend the Barwise-Seligman theory of information flow provides a faithful theoretical description of the partial semantic integration that two agents achieve as they progressively align their underlying ontologies through the sharing of tokens, such as instances. We also discuss the insights and practical implications of the Barwise-Seligman theory with respect to the general meaning coordination proble
    • ā€¦
    corecore