61,358 research outputs found

    A predictive approach for a real-time remote visualization of large meshes

    Get PDF
    Déjà sur HALRemote access to large meshes is the subject of studies since several years. We propose in this paper a contribution to the problem of remote mesh viewing. We work on triangular meshes. After a study of existing methods of remote viewing, we propose a visualization approach based on a client-server architecture, in which almost all operations are performed on the server. Our approach includes three main steps: a first step of partitioning the original mesh, generating several fragments of the original mesh that can be supported by the supposed smaller Transfer Control Protocol (TCP) window size of the network, a second step called pre-simplification of the mesh partitioned, generating simplified models of fragments at different levels of detail, which aims to accelerate the visualization process when a client(that we also call remote user) requests a visualization of a specific area of interest, the final step involves the actual visualization of an area which interest the client, the latter having the possibility to visualize more accurately the area of interest, and less accurately the areas out of context. In this step, the reconstruction of the object taking into account the connectivity of fragments before simplifying a fragment is necessary.Pestiv-3D projec

    Multi-Resolution Texture Coding for Multi-Resolution 3D Meshes

    Full text link
    We present an innovative system to encode and transmit textured multi-resolution 3D meshes in a progressive way, with no need to send several texture images, one for each mesh LOD (Level Of Detail). All texture LODs are created from the finest one (associated to the finest mesh), but can be re- constructed progressively from the coarsest thanks to refinement images calculated in the encoding process, and transmitted only if needed. This allows us to adjust the LOD/quality of both 3D mesh and texture according to the rendering power of the device that will display them, and to the network capacity. Additionally, we achieve big savings in data transmission by avoiding altogether texture coordinates, which are generated automatically thanks to an unwrapping system agreed upon by both encoder and decoder

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Simplifying Contract-Violating Traces

    Full text link
    Contract conformance is hard to determine statically, prior to the deployment of large pieces of software. A scalable alternative is to monitor for contract violations post-deployment: once a violation is detected, the trace characterising the offending execution is analysed to pinpoint the source of the offence. A major drawback with this technique is that, often, contract violations take time to surface, resulting in long traces that are hard to analyse. This paper proposes a methodology together with an accompanying tool for simplifying traces and assisting contract-violation debugging.Comment: In Proceedings FLACOS 2012, arXiv:1209.169

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Syntactic Abstraction of B Models to Generate Tests

    Get PDF
    In a model-based testing approach as well as for the verification of properties, B models provide an interesting solution. However, for industrial applications, the size of their state space often makes them hard to handle. To reduce the amount of states, an abstraction function can be used, often combining state variable elimination and domain abstractions of the remaining variables. This paper complements previous results, based on domain abstraction for test generation, by adding a preliminary syntactic abstraction phase, based on variable elimination. We define a syntactic transformation that suppresses some variables from a B event model, in addition to a method that chooses relevant variables according to a test purpose. We propose two methods to compute an abstraction A of an initial model M. The first one computes A as a simulation of M, and the second one computes A as a bisimulation of M. The abstraction process produces a finite state system. We apply this abstraction computation to a Model Based Testing process.Comment: Tests and Proofs 2010, Malaga : Spain (2010
    corecore