143 research outputs found

    Nonlinear Model Predictive Control Of A Distillation Column Using Hammerstein Model And Nonlinear Autoregressive Model With Exogenous Input.

    Get PDF
    Turus penyulingan adalah unit proses penting dalam industri penapisan petroleum dan kimia. Ia perlu dikawal hampir dengan keadaan-keadaan pengendalian yang optima demi insentif- nsentif ekonomi. Distillation column is an important processing unit in petroleum refining and chemical industries, and needs to be controlled close to the optimum operating conditions because of economic incentives

    Methods for Model Complexity Reduction for the Nonlinear Calibration of Amplifiers Using Volterra Kernels

    Get PDF
    Volterra models allow modeling nonlinear dynamical systems, even though they require the estimation of a large number of parameters and have, consequently, potentially large computational costs. The pruning of Volterra models is thus of fundamental importance to reduce the computational costs of nonlinear calibration, and improve stability and speed, while preserving accuracy. Several techniques (LASSO, DOMP and OBS) and their variants (WLASSO and OBD) are compared in this paper for the experimental calibration of an IF amplifier. The results show that Volterra models can be simplified, yielding models that are 4–5 times sparser, with a limited impact on accuracy. About 6 dB of improved Error Vector Magnitude (EVM) is obtained, improving the dynamic range of the amplifiers. The Symbol Error Rate (SER) is greatly reduced by calibration at a large input power, and pruning reduces the model complexity without hindering SER. Hence, pruning allows improving the dynamic range of the amplifier, with almost an order of magnitude reduction in model complexity. We propose the OBS technique, used in the neural network field, in conjunction with the better known DOMP technique, to prune the model with the best accuracy. The simulations show, in fact, that the OBS and DOMP techniques outperform the others, and OBD, LASSO and WLASSO are, in turn, less efficient. A methodology for pruning in the complex domain is described, based on the Frisch–Waugh–Lovell (FWL) theorem, to separate the linear and nonlinear sections of the model. This is essential because linear models are used for equalization and cannot be pruned to preserve model generality vis-a-vis channel variations, whereas nonlinear models must be pruned as much as possible to minimize the computational overhead. This methodology can be extended to models other than the Volterra one, as the only conditions we impose on the nonlinear model are that it is feedforward and linear in the parameters

    LPV system identification with globally fixed orthonormal basis functions

    Full text link
    A global and a local identification approach are developed for approximation of linear parameter-varying (LPV) systems. The utilized model structure is a linear combination of globally fixed (scheduling-independent) orthonormal basis functions (OBFs) with scheduling-parameter dependent weights. Whether the weighting is applied on the input or on the output side of the OBFs, the resulting models have different modeling capabilities. The local identification approach of these structures is based on the interpolation of locally identified LTI models on the scheduling domain where the local models are composed from a fixed set of OBFs. The global approach utilizes a priori chosen functional dependence of the parameter-varying weighting of a fixed set of OBFs to deliver global model estimation from measured I/O data. Selection of the OBFs that guarantee the least worst-case modeling error for the local behaviors in an asymptotic sense, is accomplished through the fuzzy Kolmogorov c-max approach. The proposed methods are analyzed in terms of applicability and consistency of the estimates

    Performance analysis and troubleshooting of process control loops

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore