13 research outputs found

    Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods

    Get PDF
    [EN] Diabetes is a disease of great and rising prevalence, with the obesity epidemic being a significant contributing risk factor. Duodenal¿jejunal bypass liner (DJBL) is a reversible implant that mimics the effects of more aggressive surgical procedures, such as gastric bypass, to induce weight loss. We hypothesized that DJBL also influences the glucose dynamics in type II diabetes, based on the induced changes already demonstrated in other physiological characteristics and parameters. In order to assess the validity of this assumption, we conducted a quantitative analysis based on several nonlinear algorithms (Lempel¿Ziv Complexity, Sample Entropy, Permutation Entropy, and modified Permutation Entropy), well suited to the characterization of biomedical time series. We applied them to glucose records drawn from two extreme cases available of DJBL implantation: before and after 10 months. The results confirmed the hypothesis and an accuracy of 86.4% was achieved with modified Permutation Entropy. Other metrics also yielded significant classification accuracy results, all above 70%, provided a suitable parameter configuration was chosen. With the Leave¿One¿Out method, the results were very similar, between 72% and 82% classification accuracy. There was also a decrease in entropy of glycaemia records during the time interval studied. These findings provide a solid foundation to assess how glucose metabolism may be influenced by DJBL implantation and opens a new line of research in this field.The Czech clinical partners were supported by DRO IKEM 000023001 and RVO VFN 64165. The Czech technical partners were supported by Research Centre for Informatics grant numbers CZ.02.1.01/0.0/16 - 019/0000765 and SGS16/231/OHK3/3T/13-Support of interactive approaches to biomedical data acquisition and processing. No funding was received to support this research work by the Spanish and British partnersCuesta Frau, D.; Novák, D.; Burda, V.; Abasolo, D.; Adjei, T.; Varela, M.; Vargas, B.... (2019). Influence of Duodenal-Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods. Complexity. 2019. https://doi.org/10.1155/2019/6070518S2019Kassirer, J. P., & Angell, M. (1998). Losing Weight — An Ill-Fated New Year’s Resolution. New England Journal of Medicine, 338(1), 52-54. doi:10.1056/nejm199801013380109Van Gaal, L., & Dirinck, E. (2016). Pharmacological Approaches in the Treatment and Maintenance of Weight Loss. Diabetes Care, 39(Supplement 2), S260-S267. doi:10.2337/dcs15-3016De Jonge, C., Rensen, S. S., Verdam, F. J., Vincent, R. P., Bloom, S. R., Buurman, W. A., … Greve, J. W. M. (2015). Impact of Duodenal-Jejunal Exclusion on Satiety Hormones. Obesity Surgery, 26(3), 672-678. doi:10.1007/s11695-015-1889-yMuñoz, R., Dominguez, A., Muñoz, F., Muñoz, C., Slako, M., Turiel, D., … Escalona, A. (2013). Baseline glycated hemoglobin levels are associated with duodenal-jejunal bypass liner-induced weight loss in obese patients. Surgical Endoscopy, 28(4), 1056-1062. doi:10.1007/s00464-013-3283-yOgata, H., Tokuyama, K., Nagasaka, S., Ando, A., Kusaka, I., Sato, N., … Yamamoto, Y. (2007). Long-range Correlated Glucose Fluctuations in Diabetes. Methods of Information in Medicine, 46(02), 222-226. doi:10.1055/s-0038-1625411Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787-835. doi:10.1016/j.mcna.2004.04.013Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906Zhao, L., Wei, S., Zhang, C., Zhang, Y., Jiang, X., Liu, F., & Liu, C. (2015). Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy, 17(12), 6270-6288. doi:10.3390/e17096270Weinstein, R. L., Schwartz, S. L., Brazg, R. L., Bugler, J. R., Peyser, T. A., & McGarraugh, G. V. (2007). Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care, 30(5), 1125-1130. doi:10.2337/dc06-1602Weber, C., & Schnell, O. (2009). The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technology & Therapeutics, 11(10), 623-633. doi:10.1089/dia.2009.0043Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value rr for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870Crenier, L., Lytrivi, M., Van Dalem, A., Keymeulen, B., & Corvilain, B. (2016). Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(4), 1490-1497. doi:10.1210/jc.2015-4035Cuesta, D., Varela, M., Miró, P., Galdós, P., Abásolo, D., Hornero, R., & Aboy, M. (2007). Predicting survival in critical patients by use of body temperature regularity measurement based on approximate entropy. Medical & Biological Engineering & Computing, 45(7), 671-678. doi:10.1007/s11517-007-0200-3Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.02291

    Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities

    Full text link
    [EN] Despite its widely tested and proven usefulness, there is still room for improvement in the basic permutation entropy (PE) algorithm, as several subsequent studies have demonstrated in recent years. Some of these new methods try to address the well-known PE weaknesses, such as its focus only on ordinal and not on amplitude information, and the possible detrimental impact of equal values found in subsequences. Other new methods address less specific weaknesses, such as the PE results¿ dependence on input parameter values, a common problem found in many entropy calculation methods. The lack of discriminating power among classes in some cases is also a generic problem when entropy measures are used for data series classification. This last problem is the one specifically addressed in the present study. Toward that purpose, the classification performance of the standard PE method was first assessed by conducting several time series classification tests over a varied and diverse set of data. Then, this performance was reassessed using a new Shannon Entropy normalisation scheme proposed in this paper: divide the relative frequencies in PE by the number of different ordinal patterns actually found in the time series, instead of by the theoretically expected number. According to the classification accuracy obtained, this last approach exhibited a higher class discriminating power. It was capable of finding significant differences in six out of seven experimental datasets¿whereas the standard PE method only did in four¿and it also had better classification accuracy. It can be concluded that using the additional information provided by the number of forbidden/found patterns, it is possible to achieve a higher discriminating power than using the classical PE normalisation method. The resulting algorithm is also very similar to that of PE and very easy to implement.Cuesta Frau, D. (2020). Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities. Entropy. 22(5):1-17. https://doi.org/10.3390/e22050494S117225Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553Li, J., Yan, J., Liu, X., & Ouyang, G. (2014). Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. Entropy, 16(6), 3049-3061. doi:10.3390/e16063049Ravelo-García, A., Navarro-Mesa, J., Casanova-Blancas, U., Martin-Gonzalez, S., Quintana-Morales, P., Guerra-Moreno, I., … Hernández-Pérez, E. (2015). Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection. Entropy, 17(3), 914-927. doi:10.3390/e17030914Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176Wang, X., Si, S., Wei, Y., & Li, Y. (2019). The Optimized Multi-Scale Permutation Entropy and Its Application in Compound Fault Diagnosis of Rotating Machinery. Entropy, 21(2), 170. doi:10.3390/e21020170Wang, Q. C., Song, W. Q., & Liang, J. K. (2014). Road Flatness Detection Using Permutation Entropy (PE). Applied Mechanics and Materials, 721, 420-423. doi:10.4028/www.scientific.net/amm.721.420Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105Amigó, J. (2010). Permutation Complexity in Dynamical Systems. Springer Series in Synergetics. doi:10.1007/978-3-642-04084-9Amigó, J. M., Kocarev, L., & Szczepanski, J. (2006). Order patterns and chaos. Physics Letters A, 355(1), 27-31. doi:10.1016/j.physleta.2006.01.093Zunino, L., Zanin, M., Tabak, B. M., Pérez, D. G., & Rosso, O. A. (2009). Forbidden patterns, permutation entropy and stock market inefficiency. Physica A: Statistical Mechanics and its Applications, 388(14), 2854-2864. doi:10.1016/j.physa.2009.03.042Little, D. J., & Kane, D. M. (2017). Permutation entropy with vector embedding delays. Physical Review E, 96(6). doi:10.1103/physreve.96.062205Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7Rosso, O. A., Carpi, L. C., Saco, P. M., Gómez Ravetti, M., Plastino, A., & Larrondo, H. A. (2012). Causality and the entropy–complexity plane: Robustness and missing ordinal patterns. Physica A: Statistical Mechanics and its Applications, 391(1-2), 42-55. doi:10.1016/j.physa.2011.07.030Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385KumarSingh, B., Verma, K., & S. Thoke, A. (2015). Investigations on Impact of Feature Normalization Techniques on Classifier's Performance in Breast Tumor Classification. International Journal of Computer Applications, 116(19), 11-15. doi:10.5120/20443-2793Talukder, B., W. Hipel, K., & W. vanLoon, G. (2017). Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques. Resources, 6(4), 66. doi:10.3390/resources6040066Tofallis, C. (2014). Add or Multiply? A Tutorial on Ranking and Choosing with Multiple Criteria. INFORMS Transactions on Education, 14(3), 109-119. doi:10.1287/ited.2013.0124Henry, M., & Judge, G. (2019). Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series. Econometrics, 7(1), 10. doi:10.3390/econometrics7010010Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907Bellegdi, S. A., & Arafat, S. M. A. (2017). Automatic Detection of Epilepsy Using EEG Energy and Frequency Bands. International Journal of Applied Mathematics, Electronics and Computers, 1(SpecialIssue), 36-41. doi:10.18100/ijamec.2017specialissue30468Hussain, L., Aziz, W., Alowibdi, J. S., Habib, N., Rafique, M., Saeed, S., & Kazmi, S. Z. H. (2017). Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. Journal of Physiological Anthropology, 36(1). doi:10.1186/s40101-017-0136-8Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028Sharmila, A. (2018). Epilepsy detection from EEG signals: a review. Journal of Medical Engineering & Technology, 42(5), 368-380. doi:10.1080/03091902.2018.1513576Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80(5), 1448-1457. doi:10.1152/jappl.1996.80.5.1448Baumert, M., Czippelova, B., Ganesan, A., Schmidt, M., Zaunseder, S., & Javorka, M. (2014). Entropy Analysis of RR and QT Interval Variability during Orthostatic and Mental Stress in Healthy Subjects. Entropy, 16(12), 6384-6393. doi:10.3390/e16126384Xia, Y., Yang, L., Zunino, L., Shi, H., Zhuang, Y., & Liu, C. (2018). Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series. Entropy, 20(3), 148. doi:10.3390/e20030148Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005Bugenhagen, S. M., Cowley, A. W., & Beard, D. A. (2010). Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiological Genomics, 42(1), 23-41. doi:10.1152/physiolgenomics.00027.2010Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X., & Schafer, W. R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nature Methods, 10(9), 877-879. doi:10.1038/nmeth.2560Brown, A. E. X., Yemini, E. I., Grundy, L. J., Jucikas, T., & Schafer, W. R. (2012). A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proceedings of the National Academy of Sciences, 110(2), 791-796. doi:10.1073/pnas.1211447110Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871Bürkner, P.-C., Doebler, P., & Holling, H. (2016). Optimal design of the Wilcoxon-Mann-Whitney-test. Biometrical Journal, 59(1), 25-40. doi:10.1002/bimj.201600022Bian, Z., Ouyang, G., Li, Z., Li, Q., Wang, L., & Li, X. (2016). Weighted-Permutation Entropy Analysis of Resting State EEG from Diabetics with Amnestic Mild Cognitive Impairment. Entropy, 18(8), 307. doi:10.3390/e18080307Deng, B., Liang, L., Li, S., Wang, R., Yu, H., Wang, J., & Wei, X. (2015). Complexity extraction of electroencephalograms in Alzheimer’s disease with weighted-permutation entropy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(4), 043105. doi:10.1063/1.491701

    Lessons from European Energy Research and Energy RIs: Towards a European Science of Research Organizations?

    Get PDF

    Decomposition of total primary energy supply: efficiency trends in the EU-28 Member States, 1990-2013

    Get PDF

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore