2,454 research outputs found

    Model Checking to Assess T-Helper Cell Plasticity

    Get PDF
    Computational modeling constitutes a crucial step toward the functional understanding of complex cellular networks. In particular, logical modeling has proven suitable for the dynamical analysis of large signaling and transcriptional regulatory networks. In this context, signaling input components are generally meant to convey external stimuli, or environmental cues. In response to such external signals, cells acquire specific gene expression patterns modeled in terms of attractors (e.g., stable states). The capacity for cells to alter or reprogram their differentiated states upon changes in environmental conditions is referred to as cell plasticity. In this article, we present a multivalued logical framework along with computational methods recently developed to efficiently analyze large models. We mainly focus on a symbolic model checking approach to investigate switches between attractors subsequent to changes of input conditions. As a case study, we consider the cellular network regulating the differentiation of T-helper (Th) cells, which orchestrate many physiological and pathological immune responses. To account for novel cellular subtypes, we present an extended version of a published model of Th cell differentiation. We then use symbolic model checking to analyze reachability properties between Th subtypes upon changes of environmental cues. This allows for the construction of a synthetic view of Th cell plasticity in terms of a graph connecting subtypes with arcs labeled by input conditions. Finally, we explore novel strategies enabling specific Th cell polarizing or reprograming events.LabEx MemoLife, Ecole Normale Supérieure, FCT grants: (PEst-OE/EEI/LA0021/2013, IF/01333/2013), Ph.D.program of the Agence National de Recherche sur Le Sida (ANRS), European Research Council consolidator grant

    STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification

    Get PDF
    Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways

    Model Revision from Temporal Logic Properties in Computational Systems Biology

    Get PDF
    International audienceSystems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wildlife and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrate how they can be useful to the modeler. We focus on biochemical reaction models written in the Systems Biology Markup Language SBML, and interpreted in the Biochemical Abstract Machine BIOCHAM. We first present a model revision algorithm for inferring reaction rules from biological properties expressed in temporal logic. Then we discuss the representations of kinetic models with ordinary differential equations (ODEs) and with stochastic logic programs (SLPs), and describe a parameter search algorithm for finding parameter values satisfying quantitative temporal properties. These methods are illustrated by a simple model of the cell cycle control, and by an application to the modelling of the conditions of synchronization in period of the cell cycle by the circadian cycle

    The Architecture And Dynamics Of Gene Regulatory Networks Directing Cell-Fate Choice During Murine Hematopoiesis

    Get PDF
    Mammals produce hundreds of billions of new blood cells every day througha process known as hematopoiesis. Hematopoiesis starts with stem cells that develop into all the different types of cells found in blood by changing their genome-wide gene expression. The remodeling of genome-wide gene expression can be primarily attributed to a special class of proteins called transcription factors (TFs) that can activate or repress other genes, including genes encoding TFs. TFs and their targets therefore form recurrent networks called gene regulatory networks (GRNs). GRNs are crucial during physiological developmental processes, such as hematopoiesis, while abnormalities in the regulatory interactions of GRNs can be detrimental to the organisms. To this day we do not know all the key compo-nents that comprise hematopoietic GRNs or the complete set of their regulatory interactions. Inference of GRNs directly from genetic experiments is low throughput and labor intensive, while computational inference of comprehensive GRNs is challenging due to high processing times. This dissertation focuses on deriving the architecture and the dynamics of hematopoietic GRNs from genome-wide gene expression data obtained from high-resolution time-series experiments. The dissertation also aims to address the technical challenge of speeding up the process of GRN inference. Here GRNs are inferred and modeled using gene circuits, a data-driven method based on Ordinary Differential Equations (ODEs). In gene circuits, the rate of change of a gene product depends on regulatory influences from other genes encoded as a set of parameters that are inferred from time-series data. A twelve-gene GRN comprising genes encoding key TFs and cytokine receptors involved in erythrocyte-neutrophil differentiation was inferred from a high-resolution time-series dataset of the in vitro differentiation of a multipotential cell line. The inferred GRN architecture agreed with prior empirical evidence and pre- dicted novel regulatory interactions. The inferred GRN model was also able to predict the outcome of perturbation experiments, suggesting an accurate inference of GRN architecture. The dynamics of the inferred GRN suggested an alternative explanation to the currently accepted sequence of regulatory events during neutrophil differentiation. The analysis of the model implied that two TFs, C/EBPα and Gfi1, initiate cell-fate choice in the neutrophil lineage, while PU.1, believed to be a master regulator of all white-blood cells, is activated only later. This inference was confirmed in a single-cell RNA-Seq dataset from mouse bone marrow, in which PU.1 upregulation was preceded by C/EBPα and Gfi1 upregulation. This dissertation also presents an analysis of a high-temporal resolution genome-wide gene expression dataset of in vitro macrophage-neutrophil differentiation. Analysis of these data reveal that genome-wide gene expression during differentiation is highly dynamic and complex. A large-scale transition is observed around 8h and shown to be related to wide-spread physiological remodeling of the cells. The genes associated by myeloid differentiation mainly change during the first 4 hours, implying that the cell-fate decision takes place in the first four hours of differentiation. The dissertation also presents a new classification-based model-training technique that addresses the challenge of the high computational cost of inferring GRNs. This method, called Fast Inference of Gene Regulation (FIGR), is demonstrated to be two orders magnitude faster than global non-linear optimization techniques and its computational complexity scales much better with GRN size. This work has demonstrated the feasibility of simulating relatively large realistic GRNs using a dynamical and mechanistically accurate model coupled to high-resolution time series data and that such models can yield novel biological insight. Taken together with the macrophage-neutrophil dataset and the computationally efficient GRN inference methodology, this work should open up new avenues for modeling more comprehensive GRNs in hematopoiesis and the broader field of developmental biology

    Blueprint: descrição da complexidade da regulação metabólica através da reconstrução de modelos metabólicos e regulatórios integrados

    Get PDF
    Tese de doutoramento em Biomedical EngineeringUm modelo metabólico consegue prever o fenótipo de um organismo. No entanto, estes modelos podem obter previsões incorretas, pois alguns processos metabólicos são controlados por mecanismos reguladores. Assim, várias metodologias foram desenvolvidas para melhorar os modelos metabólicos através da integração de redes regulatórias. Todavia, a reconstrução de modelos regulatórios e metabólicos à escala genómica para diversos organismos apresenta diversos desafios. Neste trabalho, propõe-se o desenvolvimento de diversas ferramentas para a reconstrução e análise de modelos metabólicos e regulatórios à escala genómica. Em primeiro lugar, descreve-se o Biological networks constraint-based In Silico Optimization (BioISO), uma nova ferramenta para auxiliar a curação manual de modelos metabólicos. O BioISO usa um algoritmo de relação recursiva para orientar as previsões de fenótipo. Assim, esta ferramenta pode reduzir o número de artefatos em modelos metabólicos, diminuindo a possibilidade de obter erros durante a fase de curação. Na segunda parte deste trabalho, desenvolveu-se um repositório de redes regulatórias para procariontes que permite suportar a sua integração em modelos metabólicos. O Prokaryotic Transcriptional Regulatory Network Database (ProTReND) inclui diversas ferramentas para extrair e processar informação regulatória de recursos externos. Esta ferramenta contém um sistema de integração de dados que converte dados dispersos de regulação em redes regulatórias integradas. Além disso, o ProTReND dispõe de uma aplicação que permite o acesso total aos dados regulatórios. Finalmente, desenvolveu-se uma ferramenta computacional no MEWpy para simular e analisar modelos regulatórios e metabólicos. Esta ferramenta permite ler um modelo metabólico e/ou rede regulatória, em diversos formatos. Esta estrutura consegue construir um modelo regulatório e metabólico integrado usando as interações regulatórias e as ligações entre genes e proteínas codificadas no modelo metabólico e na rede regulatória. Além disso, esta estrutura suporta vários métodos de previsão de fenótipo implementados especificamente para a análise de modelos regulatórios-metabólicos.Genome-Scale Metabolic (GEM) models can predict the phenotypic behavior of organisms. However, these models can lead to incorrect predictions, as certain metabolic processes are controlled by regulatory mechanisms. Accordingly, many methodologies have been developed to extend the reconstruction and analysis of GEM models via the integration of Transcriptional Regulatory Network (TRN)s. Nevertheless, the perspective of reconstructing integrated genome-scale regulatory and metabolic models for diverse prokaryotes is still an open challenge. In this work, we propose several tools to assist the reconstruction and analysis of regulatory and metabolic models. We start by describing BioISO, a novel tool to assist the manual curation of GEM models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype predictions. Hence, this tool can reduce the number of artifacts in GEM models, decreasing the burdens of model refinement and curation. A state-of-the-art repository of TRNs for prokaryotes was implemented to support the reconstruction and integration of TRNs into GEM models. The ProTReND repository comprehends several tools to extract and process regulatory information available in several resources. More importantly, this repository contains a data integration system to unify the regulatory data into standardized TRNs at the genome scale. In addition, ProTReND contains a web application with full access to the regulatory data. Finally, we have developed a new modeling framework to define, simulate and analyze GEnome-scale Regulatory and Metabolic (GERM) models in MEWpy. The GERM model framework can read a GEM model, as well as a TRN from different file formats. This framework assembles a GERM model using the regulatory interactions and Genes-Proteins-Reactions (GPR) rules encoded into the GEM model and TRN. In addition, this modeling framework supports several methods of phenotype prediction designed for regulatory-metabolic models.I would like to thank Fundação para a Ciência e Tecnologia for the Ph.D. studentship I was awarded with (SFRH/BD/139198/2018)
    corecore