1,749 research outputs found

    Signal Convolution Logic

    Get PDF
    We introduce a new logic called Signal Convolution Logic (SCL) that combines temporal logic with convolutional filters from digital signal processing. SCL enables to reason about the percentage of time a formula is satisfied in a bounded interval. We demonstrate that this new logic is a suitable formalism to effectively express non-functional requirements in Cyber-Physical Systems displaying noisy and irregular behaviours. We define both a qualitative and quantitative semantics for it, providing an efficient monitoring procedure. Finally, we prove SCL at work to monitor the artificial pancreas controllers that are employed to automate the delivery of insulin for patients with type-1 diabetes

    Design and Implementation of an Integrated Biosensor Platform for Lab-on-a-Chip Diabetic Care Systems

    Get PDF
    Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term implantation of the sensor system. Glucose sensors combined with sensor readout, insulin bolus control algorithm, and insulin infusion devices can function as an artificial pancreas. However, challenges remain in integrated glucose sensing which include degradation of electrode sensitivity at the microscale, integration of the electrodes with low power low noise readout electronics, and correlation of fluctuations in glucose levels with other physiological data. This work develops 1) a low power and compact glucose monitoring system and 2) a low power single chip solution for real time physiological feedback in an artificial pancreas system. First, glucose sensor sensitivity and robustness is improved using robust vertically aligned carbon nanofiber (VACNF) microelectrodes. Electrode architectures have been optimized, modeled and verified with physiologically relevant glucose levels. Second, novel potentiostat topologies based on a difference-differential common gate input pair transimpedance amplifier and low-power voltage controlled oscillators have been proposed, mathematically modeled and implemented in a 0.18μm [micrometer] complementary metal oxide semiconductor (CMOS) process. Potentiostat circuits are widely used as the readout electronics in enzymatic electrochemical sensors. The integrated potentiostat with VACNF microelectrodes achieves competitive performance at low power and requires reduced chip space. Third, a low power instrumentation solution consisting of a programmable charge amplifier, an analog feature extractor and a control algorithm has been proposed and implemented to enable continuous physiological data extraction of bowel sounds using a single chip. Abdominal sounds can aid correlation of meal events to glucose levels. The developed integrated sensing systems represent a significant advancement in artificial pancreas systems

    Model Predictive Control Algorithms for Pen and Pump Insulin Administration

    Get PDF

    Robust strategies for glucose control in type 1 diabetes

    Full text link
    [EN] Type 1 diabetes mellitus is a chronic and incurable disease that affects millions of people all around the world. Its main characteristic is the destruction (totally or partially) of the beta cells of the pancreas. These cells are in charge of producing insulin, main hormone implied in the control of blood glucose. Keeping high levels of blood glucose for a long time has negative health effects, causing different kinds of complications. For that reason patients with type 1 diabetes mellitus need to receive insulin in an exogenous way. Since 1921 when insulin was first isolated to be used in humans and first glucose monitoring techniques were developed, many advances have been done in clinical treatment with insulin. Currently 2 main research lines focused on improving the quality of life of diabetic patients are opened. The first one is concentrated on the research of stem cells to replace damaged beta cells and the second one has a more technological orientation. This second line focuses on the development of new insulin analogs to allow emulating with higher fidelity the endogenous pancreas secretion, the development of new noninvasive continuous glucose monitoring systems and insulin pumps capable of administering different insulin profiles and the use of decision-support tools and telemedicine. The most important challenge the scientific community has to overcome is the development of an artificial pancreas, that is, to develop algorithms that allow an automatic control of blood glucose. The main difficulty avoiding a tight glucose control is the high variability found in glucose metabolism. This fact is especially important during meal compensation. This variability, together with the delay in subcutaneous insulin absorption and action causes controller overcorrection that leads to late hypoglycemia (the most important acute complication of insulin treatment). The proposals of this work pay special attention to overcome these difficulties. In that way interval models are used to represent the patient physiology and to be able to take into account parametric uncertainty. This type of strategy has been used in both the open loop proposal for insulin dosage and the closed loop algorithm. Moreover the idea behind the design of this last proposal is to avoid controller overcorrection to minimize hypoglycemia while adding robustness against glucose sensor failures and over/under- estimation of meal carbohydrates. The algorithms proposed have been validated both in simulation and in clinical trials.[ES] La diabetes mellitus tipo 1 es una enfermedad crónica e incurable que afecta a millones de personas en todo el mundo. Se caracteriza por una destrucción total o parcial de las células beta del páncreas. Estas células son las encargadas de producir la insulina, hormona principal en el control de glucosa en sangre. Valores altos de glucosa en la sangre mantenidos en el tiempo afectan negativamente a la salud, provocando complicaciones de diversa índole. Es por eso que los pacientes con diabetes mellitus tipo 1 necesitan recibir insulina de forma exógena. Desde que se consiguiera en 1921 aislar la insulina para poder utilizarla en clínica humana, y se empezaran a desarrollar las primeras técnicas de monitorización de glucemia, se han producido grandes avances en el tratamiento con insulina. Actualmente, las líneas de investigación que se están siguiendo en relación a la mejora de la calidad de vida de los pacientes diabéticos, tienen fundamentalmente 2 vertientes: una primera que se centra en la investigación en células madre para la reposición de las células beta y una segunda vertiente de carácter más tecnológico. Dentro de esta segunda vertiente, están abiertas varias líneas de investigación, entre las que se encuentran el desarrollo de nuevos análogos de insulina que permitan emular más fielmente la secreción endógena del páncreas, el desarrollo de monitores continuos de glucosa no invasivos, bombas de insulina capaces de administrar distintos perfiles de insulina y la inclusión de sistemas de ayuda a la decisión y telemedicina. El mayor reto al que se enfrentan los investigadores es el de conseguir desarrollar un páncreas artificial, es decir, desarrollar algoritmos que permitan disponer de un control automático de la glucosa. La principal barrera que se encuentra para conseguir un control riguroso de la glucosa es la alta variabilidad que presenta su metabolismo. Esto es especialmente significativo durante la compensación de las comidas. Esta variabilidad junto con el retraso en la absorción y actuación de la insulina administrada de forma subcutánea favorece la aparición de hipoglucemias tardías (complicación aguda más importante del tratamiento con insulina) a consecuencia de la sobreactuación del controlador. Las propuestas presentadas en este trabajo hacen especial hincapié en sobrellevar estas dificultades. Así, se utilizan modelos intervalares para representar la fisiología del paciente, y poder tener en cuenta la incertidumbre en sus parámetros. Este tipo de estrategia se ha utilizado tanto en la propuesta de dosificación automática en lazo abierto como en el algoritmo en lazo cerrado. Además la principal idea de diseño de esta última propuesta es evitar la sobreactuación del controlador evitando hipoglucemias y añadiendo robustez ante fallos en el sensor de glucosa y en la estimación de las comidas. Los algoritmos propuestos han sido validados en simulación y en clínica.[CA] La diabetis mellitus tipus 1 és una malaltia crònica i incurable que afecta milions de persones en tot el món. Es caracteritza per una destrucció total o parcial de les cèl.lules beta del pàncrees. Aquestes cèl.lules són les encarregades de produir la insulina, hormona principal en el control de glucosa en sang. Valors alts de glucosa en la sang mantinguts en el temps afecten negativament la salut, provocant complicacions de diversa índole. És per això que els pacients amb diabetis mellitus tipus 1 necessiten rebre insulina de forma exògena. Des que s'aconseguís en 1921 aïllar la insulina per a poder utilitzar-la en clínica humana, i es començaren a desenrotllar les primeres tècniques de monitorització de glucèmia, s'han produït grans avanços en el tractament amb insulina. Actualment, les línies d'investigació que s'estan seguint en relació a la millora de la qualitat de vida dels pacients diabètics, tenen fonamentalment 2 vessants: un primer que es centra en la investigació de cèl.lules mare per a la reposició de les cèl.lules beta i un segon vessant de caràcter més tecnològic. Dins d' aquest segon vessant, estan obertes diverses línies d'investigació, entre les que es troben el desenrotllament de nous anàlegs d'insulina que permeten emular més fidelment la secreció del pàncrees, el desenrotllament de monitors continus de glucosa no invasius, bombes d'insulina capaces d'administrar distints perfils d'insulina i la inclusió de sistemes d'ajuda a la decisió i telemedicina. El major repte al què s'enfronten els investigadors és el d'aconseguir desenrotllar un pàncrees artificial, és a dir, desenrotllar algoritmes que permeten disposar d'un control automàtic de la glucosa. La principal barrera que es troba per a aconseguir un control rigorós de la glucosa és l'alta variabilitat que presenta el seu metabolisme. Açò és especialment significatiu durant la compensació dels menjars. Aquesta variabilitat junt amb el retard en l'absorció i actuació de la insulina administrada de forma subcutània afavorix l'aparició d'hipoglucèmies tardanes (complicació aguda més important del tractament amb insulina) a conseqüència de la sobreactuació del controlador. Les propostes presentades en aquest treball fan especial insistència en suportar aquestes dificultats. Així, s'utilitzen models intervalares per a representar la fisiologia del pacient, i poder tindre en compte la incertesa en els seus paràmetres. Aquest tipus d'estratègia s'ha utilitzat tant en la proposta de dosificació automàtica en llaç obert com en l' algoritme en llaç tancat. A més, la principal idea de disseny d'aquesta última proposta és evitar la sobreactuació del controlador evitant hipoglucèmies i afegint robustesa.Revert Tomás, A. (2015). Robust strategies for glucose control in type 1 diabetes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56001TESI

    Modelling coordination in biological systems

    Get PDF
    We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexibl

    Combining Machine Learning and Formal Methods for Complex Systems Design

    Get PDF
    During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study.During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed
    corecore