24,067 research outputs found

    Hybrid Petri net model of a traffic intersection in an urban network

    Get PDF
    Control in urban traffic networks constitutes an important and challenging research topic nowadays. In the literature, a lot of work can be found devoted to improving the performance of the traffic flow in such systems, by means of controlling the red-to-green switching times of traffic signals. Different techniques have been proposed and commercially implemented, ranging from heuristic methods to model-based optimization. However, given the complexity of the dynamics and the scale of urban traffic networks, there is still a lot of scope for improvement. In this work, a new hybrid model for the traffic behavior at an intersection is introduced. It captures important aspects of the flow dynamics in urban networks. It is shown how this model can be used in order to obtain control strategies that improve the flow of traffic at intersections, leading to the future possibility of controlling several connected intersections in a distributed way

    Human-in-the-Loop Model Predictive Control of an Irrigation Canal

    Get PDF
    Until now, advanced model-based control techniques have been predominantly employed to control problems that are relatively straightforward to model. Many systems with complex dynamics or containing sophisticated sensing and actuation elements can be controlled if the corresponding mathematical models are available, even if there is uncertainty in this information. Consequently, the application of model-based control strategies has flourished in numerous areas, including industrial applications [1]-[3].Junta de Andalucía P11-TEP-812

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator

    Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning

    Get PDF
    Traffic flow prediction is a fundamental problem for efficient transportation control and management. However, most current data-driven traffic prediction work found in the literature have focused on predicting traffic from an individual task perspective, and have not fully leveraged the implicit knowledge present in a road-network through space and time correlations. Such correlations are now far easier to isolate due to the recent profusion of traffic data sources and more specifically their wide geographic spread. In this paper, we take a multi-task learning (MTL) approach whose fundamental aim is to improve the generalization performance by leveraging the domain-specific information contained in related tasks that are jointly learned. In addition, another common factor found in the literature is that a historical dataset is used for the calibration and the assessment of the proposed approach, without dealing in any explicit or implicit way with the frequent challenges found in real-time prediction. In contrast, we adopt a different approach which faces this problem from a point of view of streams of data, and thus the learning procedure is undertaken online, giving greater importance to the most recent data, making data-driven decisions online, and undoing decisions which are no longer optimal. In the experiments presented we achieve a more compact and consistent knowledge in the form of rules automatically extracted from data, while maintaining or even improving, in some cases, the performance over single-task learning (STL).Peer ReviewedPostprint (published version

    An efficient hybrid model and dynamic performance analysis for multihop wireless networks

    Get PDF
    Multihop wireless networks can be subjected to nonstationary phenomena due to a dynamic network topology and time varying traffic. However, the simulation techniques used to study multihop wireless networks focus on the steady-state performance even though transient or nonstationary periods will often occur. Moreover, the majority of the simulators suffer from poor scalability. In this paper, we develop an efficient performance modeling technique for analyzing the time varying queueing behavior of multihop wireless networks. The one-hop packet transmission (service) time is assumed to be deterministic, which could be achieved by contention-free transmission, or approximated in sparse or lightly loaded multihop wireless networks. Our model is a hybrid of time varying adjacency matrix and fluid flow based differential equations, which represent dynamic topology changes and nonstationary network queues, respectively. Numerical experiments show that the hybrid fluid based model can provide reasonably accurate results much more efficiently than standard simulators. Also an example application of the modeling technique is given showing the nonstationary network performance as a function of node mobility, traffic load and wireless link quality. © 2013 IEEE

    Estimation and prediction of road traffic flow using particle filter for real-time traffic control

    Get PDF
    Real-data testing results of a real-time state estimator and predictor are presented with particular focus on the feature of enabling of detector fault alarms and also its relation to queue-length based traffic control. A parameter and state estimator/predictor is developed by using particle filter. The simulation testing results are quite satisfactory and promising for further work on developing a hybrid model of traffic flow that captures the transition between low and high intensity. By using this hybrid model, it may be more feasible to achieve the significant feature of automatic adaptation to changing system condition

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201
    • …
    corecore