271 research outputs found

    Optimization based solutions for control and state estimation in non-holonomic mobile robots: stability, distributed control, and relative localization

    Get PDF
    Interest in designing, manufacturing, and using autonomous robots has been rapidly growing during the most recent decade. The main motivation for this interest is the wide range of potential applications these autonomous systems can serve in. The applications include, but are not limited to, area coverage, patrolling missions, perimeter surveillance, search and rescue missions, and situational awareness. In this thesis, the area of control and state estimation in non-holonomic mobile robots is tackled. Herein, optimization based solutions for control and state estimation are designed, analyzed, and implemented to such systems. One of the main motivations for considering such solutions is their ability of handling constrained and nonlinear systems such as non-holonomic mobile robots. Moreover, the recent developments in dynamic optimization algorithms as well as in computer processing facilitated the real-time implementation of such optimization based methods in embedded computer systems. Two control problems of a single non-holonomic mobile robot are considered first; these control problems are point stabilization (regulation) and path-following. Here, a model predictive control (MPC) scheme is used to fulfill these control tasks. More precisely, a special class of MPC is considered in which terminal constraints and costs are avoided. Such constraints and costs are traditionally used in the literature to guarantee the asymptotic stability of the closed loop system. In contrast, we use a recently developed stability criterion in which the closed loop asymptotic stability can be guaranteed by appropriately choosing the prediction horizon length of the MPC controller. This method is based on finite time controllability as well as bounds on the MPC value function. Afterwards, a regulation control of a multi-robot system (MRS) is considered. In this control problem, the objective is to stabilize a group of mobile robots to form a pattern. We achieve this task using a distributed model predictive control (DMPC) scheme based on a novel communication approach between the subsystems. This newly introduced method is based on the quantization of the robots’ operating region. Therefore, the proposed communication technique allows for exchanging data in the form of integers instead of floating-point numbers. Additionally, we introduce a differential communication scheme to achieve a further reduction in the communication load. Finally, a moving horizon estimation (MHE) design for the relative state estimation (relative localization) in an MRS is developed in this thesis. In this framework, robots with less payload/computational capacity, in a given MRS, are localized and tracked using robots fitted with high-accuracy sensory/computational means. More precisely, relative measurements between these two classes of robots are used to localize the less (computationally) powerful robotic members. As a complementary part of this study, the MHE localization scheme is combined with a centralized MPC controller to provide an algorithm capable of localizing and controlling an MRS based only on relative sensory measurements. The validity and the practicality of this algorithm are assessed by realtime laboratory experiments. The conducted study fills important gaps in the application area of autonomous navigation especially those associated with optimization based solutions. Both theoretical as well as practical contributions have been introduced in this research work. Moreover, this thesis constructs a foundation for using MPC without stabilizing constraints or costs in the area of non-holonomic mobile robots

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Formation control of mobile robots and unmanned aerial vehicles

    Get PDF
    In this dissertation, the nonlinear control of nonholonomic mobile robot formations and unmanned aerial vehicle (UAV) formations is undertaken and presented in six papers. In the first paper, an asymptotically stable combined kinematic/torque control law is developed for leader-follower based formation control of mobile robots using backstepping. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. Subsequently, in the second paper, a novel NN observer is designed to estimate the linear and angular velocities of both the follower and its leader robot and a NN output feedback control law is developed. On the other hand, in the third paper, a NN-based output feedback control law is presented for the control of an underactuated quad rotor UAV, and a NN virtual control input scheme is proposed which allows all six degrees of freedom to be controlled using only four control inputs. The results of this paper are extended to include the control of quadrotor UAV formations, and a novel three-dimensional leader-follower framework is proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal control is undertaken using two online approximators (OLA\u27s) to solve the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-intime for the near optimal regulation and tracking control of continuous affine nonlinear systems. The effectiveness of the optimal tracking controllers proposed in the fifth and sixth papers are then demonstrated using nonholonomic mobile robot formation control --Abstract, page iv
    • …
    corecore