1,095 research outputs found

    Model predictive control for a dual active bridge inverter with a floating bridge

    Get PDF
    This paper presents a Model Predictive Control technique applied to a dual active bridge inverter where one of the bridges is floating. The proposed floating bridge topology eliminates the need for isolation transformer in a dual inverter system and therefore reduces the size, weight and losses in the system. To achieve multilevel output voltage waveforms the floating inverter DC link capacitor is charged to the half of the main DC link voltage. A finite-set Model Predictive Control technique is used to control the load current of the converter as well as the floating capacitor voltage. Model predictive control does not require any switching sequence design or complex switching time calculations as used for SVM, thus the technique has some advantages in this application. A detailed analysis of the converter as well as the predictive control strategy is given in this paper. Simulation and experimental results to validate the approach are also presented

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Model Predictive Direct Current Control (MPDCC) for Grid Connected Application

    Get PDF
    This paper deals with the design and simulation of Dual Active Bridge Multilevel Inverter (DABMI) based Model Predictive Direct Current Control (MPDCC) for grid connected application. To achieve multilevel output voltage waveforms, the second inverter will be supply with half of the dc-link voltage. Model predictive direct current control used to control the grid current component in order to achieve minimum grid current error. Modulation is unnecessary in this system because the switching pattern is produce by the possible switching that determined by the proposed MPDCC. The voltage vector which minimizes the cost function will be selected and applied to track the reference current. The performance of the proposed MPDCC is observe and implement by MATLAB/Simulink Software

    A multilevel converter with a floating bridge for open-ended winding motor drive application

    Get PDF
    In this thesis, a dual inverter topology is considered as an alternative to a multilevel converter for the control of high speed machines. Instead of feeding to one end of the stator with a single power converter, this topology feeds from both sides of the stator winding using two converters, thus achieving multilevel output voltage waveforms across the load. A large amount of published work in the area of open end winding power converter topologies are focused on symmetrical voltage sources. This published research recognises the advantages of the converter system in terms of increased reliability, improved power sharing capability and elimination of common mode voltages when compared to traditional single sided three phase converter solutions. However isolated DC supplies come with the price of additional components thus increase size, weight and losses of the converter system. The aim of this project is, therefore, to investigate on reducing size, weight and losses of the open end winding motor drive by eliminating the need for isolated supply as well to achieve multilevel output voltage waveform. A traditional open-end winding induction motor drive has been analysed in terms of weight and losses and it has been clearly identified that the isolation transformer not only increases the size and weight of a drive system but also includes additional losses. A modified dual inverter system has then been proposed where one of the bridge inverters is floating, thus eliminated the need for isolated supplies. An asymmetric DC voltage sources ratio of 2:1 is utilised to achieve multilevel output voltage waveform across the load. The switching sequences are also analysed to identify the charging and discharging sequences to achieve control over floating capacitor voltage. This thesis describes the theoretical derivation of the modified converter model and algorithms as well as experimental results from an 11kW laboratory prototype

    Applications of Power Electronics:Volume 1

    Get PDF

    A Novel Control Approach to Hybrid Multilevel Inverter for High-Power Applications

    Get PDF
    This paper proposes a hybrid control scheme for a newly devised hybrid multilevel inverter (HMLI) topology. The circuit configuration of HMLI is comprised of a cascaded converter module (CCM), connected in series with an H-bridge converter. Initially, a finite set model predictive control (FS-MPC) is adopted as a control scheme, and theoretical analysis is carried out in MATLAB/Simulink. Later, in the real-time implementation of the HMLI topology, a hybrid control scheme which is a variant of the FS-MPC method has been proposed. The proposed control method is computationally efficient and therefore has been employed to the HMLI topology to mitigate the high-frequency switching limitation of the conventional MPC. Moreover, a comparative analysis is carried to illustrate the advantages of the proposed work that includes low switching losses, higher efficiency, and improved total harmonic distortion (THD) in output current. The inverter topology and stability of the proposed control method have been validated through simulation results in MATLAB/Simulink environment. Experimental results via low-voltage laboratory prototype have been added and compared to realize the study in practice.publishedVersio

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    A multilevel converter with a floating bridge for open-ended winding motor drive application

    Get PDF
    In this thesis, a dual inverter topology is considered as an alternative to a multilevel converter for the control of high speed machines. Instead of feeding to one end of the stator with a single power converter, this topology feeds from both sides of the stator winding using two converters, thus achieving multilevel output voltage waveforms across the load. A large amount of published work in the area of open end winding power converter topologies are focused on symmetrical voltage sources. This published research recognises the advantages of the converter system in terms of increased reliability, improved power sharing capability and elimination of common mode voltages when compared to traditional single sided three phase converter solutions. However isolated DC supplies come with the price of additional components thus increase size, weight and losses of the converter system. The aim of this project is, therefore, to investigate on reducing size, weight and losses of the open end winding motor drive by eliminating the need for isolated supply as well to achieve multilevel output voltage waveform. A traditional open-end winding induction motor drive has been analysed in terms of weight and losses and it has been clearly identified that the isolation transformer not only increases the size and weight of a drive system but also includes additional losses. A modified dual inverter system has then been proposed where one of the bridge inverters is floating, thus eliminated the need for isolated supplies. An asymmetric DC voltage sources ratio of 2:1 is utilised to achieve multilevel output voltage waveform across the load. The switching sequences are also analysed to identify the charging and discharging sequences to achieve control over floating capacitor voltage. This thesis describes the theoretical derivation of the modified converter model and algorithms as well as experimental results from an 11kW laboratory prototype

    Hybrid Multilevel Converters with Internal Cascaded/Paralleled Structures for MV Electric Aircraft Applications

    Get PDF
    Using on-board medium voltage (MV) dc distribution system has been a megatrend for next-generation electric aircraft systems due to its ability to enable a significant system mass reduction. In addition, it makes electric propulsion more feasible using MV power electronic converters. To develop high-performance high-density MV power converters, the emerging silicon carbide (SiC) devices are more attractive than their silicon (Si) counterparts, since the fast switch frequency brought by the SiC can effectively reduce the volume and weight of the filter components and thus increase the converter power density. From the converter topology perspective, with the MV dc distribution, the state-of-the-art two-level converters are no longer suitable for next-generation electric aircraft system due to the excessive dv/dt and high voltage stress across the power devices.To address these issues while still maintaining cost-effectiveness, this work demonstrates a megawatt-scale MV seven-level (7-L) Si/SiC hybrid converter prototype implemented by active-neutral-point-clamped (ANPC) converter and H-bridges which is called ANPC-H converter in this work, and a MV five-level (5-L) Si/SiC hybrid ANPC converter prototype, which are hybrid multilevel converters with internal cascaded and paralleled structures, respectively. Using multilevel circuit topology, the voltage stress across the devices and converter output voltage dv/dt are reduced. The tradeoff between the system cost and efficiency was addressed by the adoption of the Si/SiC hybrid configuration with optimized modulation strategies. Comprehensive design and evaluation of the full-scale prototypes are elaborated, including the low-inductance busbar designs, power converter architecture optimization and system integration. To control the 7-L Si/SiC hybrid ANPC-H converter prototype, a low computational burden space-vector-modulation (SVM) with common-mode voltage reduction feature is proposed to fully exploit the benefits of 7-L Si/SiC hybrid ANPC-H converter. To further reduce the converter losses and simplify control algorithm, an active hybrid modulation is proposed in this work by applying low frequency modulation in Si cells and high frequency modulation in SiC cells, thus the control framework is simplified from the 7-L SVM to a three-level SVM. To control the 5-L Si/SiC hybrid ANPC converter prototype to overall loss minimization, the low frequency modulation and high frequency modulation are also adopted for Si cells and SiC cells respectively in 5-L Si/SiC hybrid ANPC converter prototype. Compared to the SVM-based hybrid modulation in 7-L ANPC-H converter, the hybrid modulation for 5-L hybrid ANPC adopts a simpler carrier-phase-shifted pulse width modulation for its inner-paralleled high frequency SiC cells, which extensively suppresses harmonics caused by high frequency switching. With the proposed modulation strategies, extensive simulation and experimental results are provided to evaluate the performance of each power stage and the full converter assembly in both the steady-state operation and variable frequency operations of the demonstrated hybrid converters
    corecore