2,705 research outputs found

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF
    Next-generation power grids will likely enable concurrent service for residences and plug-in electric vehicles (PEVs). While the residence power demand profile is known and thus can be considered inelastic, the PEVs' power demand is only known after random PEVs' arrivals. PEV charging scheduling aims at minimizing the potential impact of the massive integration of PEVs into power grids to save service costs to customers while power control aims at minimizing the cost of power generation subject to operating constraints and meeting demand. The present paper develops a model predictive control (MPC)- based approach to address the joint PEV charging scheduling and power control to minimize both PEV charging cost and energy generation cost in meeting both residence and PEV power demands. Unlike in related works, no assumptions are made about the probability distribution of PEVs' arrivals, the known PEVs' future demand, or the unlimited charging capacity of PEVs. The proposed approach is shown to achieve a globally optimal solution. Numerical results for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this approach

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF

    Definition and evaluation of model-free coordination of electrical vehicle charging with reinforcement learning

    Get PDF
    Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted QQ -iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations

    Electric Vehicles Charging Control based on Future Internet Generic Enablers

    Full text link
    In this paper a rationale for the deployment of Future Internet based applications in the field of Electric Vehicles (EVs) smart charging is presented. The focus is on the Connected Device Interface (CDI) Generic Enabler (GE) and the Network Information and Controller (NetIC) GE, which are recognized to have a potential impact on the charging control problem and the configuration of communications networks within reconfigurable clusters of charging points. The CDI GE can be used for capturing the driver feedback in terms of Quality of Experience (QoE) in those situations where the charging power is abruptly limited as a consequence of short term grid needs, like the shedding action asked by the Transmission System Operator to the Distribution System Operator aimed at clearing networks contingencies due to the loss of a transmission line or large wind power fluctuations. The NetIC GE can be used when a master Electric Vehicle Supply Equipment (EVSE) hosts the Load Area Controller, responsible for managing simultaneous charging sessions within a given Load Area (LA); the reconfiguration of distribution grid topology results in shift of EVSEs among LAs, then reallocation of slave EVSEs is needed. Involved actors, equipment, communications and processes are identified through the standardized framework provided by the Smart Grid Architecture Model (SGAM).Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Optimization of Electric-Vehicle Charging: scheduling and planning problems

    Get PDF
    The progressive shift from traditional vehicles to Electric Vehicles (EVs ) is considered one of the key measures to achieve the objective of a significant reduction in the emission of pollutants, especially in urban areas. EVs will be widely used in a not-so-futuristic vision, and new technologies will be present for charging stations, batteries, and vehicles. The number of EVs and Charging Stations (CSs) is increased in the last years, but, unfortunately, wide usage of EVs may cause technical problems to the electrical grid (i.e., instability due to intermittent distributed loads), inefficiencies in the charging process (i.e., lower power capacity and longer recharging times), long queues and bad use of CSs. Moreover, it is necessary to plan the CSs installation over the territory, the schedule of vehicles, and the optimal use of CSs. This thesis focuses on applying optimization methods and approaches to energy systems in which EVs are present, with specific reference to planning and scheduling decision problems. In particular, in smart grids, energy production, and storage systems are usually scheduled by an Energy Management System (EMS) to minimize costs, power losses, and CO2 emissions while satisfying energy demands. When CSs are connected to a smart grid, EVs served by CSs represent an additional load to the power system to be satisfied, and an additional storage system in the case of vehicle-to-grid (V2G) technology is enabled. However, the load generated by EVs is deferrable. It can be thought of as a process in which machines (CSs) serve customers/products (EVs) based on release time, due date, deadline, and energy request, as happens in manufacturing systems. In this thesis, first, attention is focused on defining a discrete-time optimization problem in which fossil fuel production plants, storage systems, and renewables are considered to satisfy the grid's electrical load. The discrete-time formalization can use forecasting for renewables and loads without data elaboration. On the other side, many decision variables are present, making the optimization problem hard to solve through commercial optimization tools. For this reason, an alternative method for the optimal schedule of EVs characterized by a discrete event formalization is presented. This new approach can diminish the number of variables by considering the time intervals as variables themselves. Of course, the solution's optimality is not guaranteed since some assumptions are necessary. Moreover, the last chapter proposes a novel approach for the optimal location and line assignment for electric bus charging stations. In particular, the model provides the siting and sizing of some CSs to maintain a minimum service frequency over public transportation lines
    • …
    corecore