834 research outputs found

    Saying Hello World with Epsilon - A Solution to the 2011 Instructive Case

    Full text link
    Epsilon is an extensible platform of integrated and task-specific languages for model management. With solutions to the 2011 TTC Hello World case, this paper demonstrates some of the key features of the Epsilon Object Language (an extension and reworking of OCL), which is at the core of Epsilon. In addition, the paper introduces several of the task-specific languages provided by Epsilon including the Epsilon Generation Language (for model-to-text transformation), the Epsilon Validation Language (for model validation) and Epsilon Flock (for model migration).Comment: In Proceedings TTC 2011, arXiv:1111.440

    GMF: A Model Migration Case for the Transformation Tool Contest

    Full text link
    Using a real-life evolution taken from the Graphical Modeling Framework, we invite submissions to explore ways in which model transformation and migration tools can be used to migrate models in response to metamodel adaptation.Comment: In Proceedings TTC 2011, arXiv:1111.440

    A Comparison of Model Migration Tools

    Get PDF
    International audienceModelling languages and thus their metamodels are subject to change. When a metamodel evolves, existing models may no longer conform to the evolved metamodel. To avoid rebuilding them from scratch, existing models must be migrated to conform to the evolved metamodel. Manually migrating existing models is tedious and errorprone. To alleviate this, several tools have been proposed to build a migration strategy that automates the migration of existing models. Little is known about the advantages and disadvantages of the tools in different situations. In this paper, we thus compare a representative sample of migration tools - AML, COPE, Ecore2Ecore and Epsilon Flock - using common migration examples. The criteria used in the comparison aim to support users in selecting the most appropriate tool for their situation

    Evolving models in Model-Driven Engineering : State-of-the-art and future challenges

    Get PDF
    The artefacts used in Model-Driven Engineering (MDE) evolve as a matter of course: models are modified and updated as part of the engineering process; metamodels change as a result of domain analysis and standardisation efforts; and the operations applied to models change as engineering requirements change. MDE artefacts are inter-related, and simultaneously constrain each other, making evolution a challenge to manage. We discuss some of the key problems of evolution in MDE, summarise the key state-of-the-art, and look forward to new challenges in research in this area

    Transformation Tool Contest 2010, 1-2 July 2010, Malaga, Spain

    Get PDF

    The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps

    Get PDF
    Anthelmintic resistance is a major problem for the control of parasitic nematodes of livestock and of growing concern for human parasite control. However, there is little understanding of how resistance arises and spreads or of the “genetic signature” of selection for this group of important pathogens. We have investigated these questions in the system for which anthelmintic resistance is most advanced; benzimidazole resistance in the sheep parasites Haemonchus contortus and Teladorsagia circumcincta. Population genetic analysis with neutral microsatellite markers reveals that T. circumcincta has higher genetic diversity but lower genetic differentiation between farms than H. contortus in the UK. We propose that this is due to epidemiological differences between the two parasites resulting in greater seasonal bottlenecking of H. contortus. There is a remarkably high level of resistance haplotype diversity in both parasites compared with drug resistance studies in other eukaryotic systems. Our analysis suggests a minimum of four independent origins of resistance mutations on just seven farms for H. contortus, and even more for T. circumincta. Both hard and soft selective sweeps have occurred with striking differences between individual farms. The sweeps are generally softer for T. circumcincta than H. contortus, consistent with its higher level of genetic diversity and consequent greater availability of new mutations. We propose a model in which multiple independent resistance mutations recurrently arise and spread by migration to explain the widespread occurrence of resistance in these parasites. Finally, in spite of the complex haplotypic diversity, we show that selection can be detected at the target locus using simple measures of genetic diversity and departures from neutrality. This work has important implications for the application of genome-wide approaches to identify new anthelmintic resistance loci and the likelihood of anthelmintic resistance emerging as selection pressure is increased in human soil-transmitted nematodes by community wide treatment programs

    Co-Transformation of Type and Instance Graphs Supporting Merging of Types and Retyping

    Get PDF
    Algebraic graph transformation is a well-known rule-based approach to manipulate graphs that can be applied in several contexts. In this paper we use it in the context of model-driven engineering. Graph transformation rules usually specify changes to only one graph per application, however there are use cases such as model co-evolution where not only a single graph should be manipulated but also related ones. The co-transformation of type graphs together with their instance graphs has shown to be a promising approach to formalize model and meta-model co-evolution. In this paper, we extend our earlier work on co-evolution by allowing transformation rules that have less restrictions so that graph manipulations such as merging of types and retyping of graph elements are allowed

    A framework for efficient model transformations

    Get PDF
    The reported productivity gains while using models and model transformations to develop entire systems, after almost a decade of experience applying model-driven approaches for system development, are already undeniable benefits of this approach. However, the slowness of higher-level, rule based model transformation languages hinders the applicability of this approach to industrial scales. Lower-level, and efficient, languages can be used but productivity and easy maintenance seize to exist. The abstraction penalty problem is not new, it also exists for high-level, object oriented languages but everyone is using them now. Why is not everyone using rule based model transformation languages then? In this thesis, we propose a framework, comprised of a language and its respective environment, designed to tackle the most performance critical operation of high-level model transformation languages: the pattern matching. This framework shows that it is possible to mitigate the performance penalty while still using high-level model transformation languages

    A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells

    Get PDF
    Background The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs). Methods rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0. Results Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings. Conclusions Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions
    • …
    corecore