2,192 research outputs found

    Eelco Visser - An Exceptional SLE Researcher

    Get PDF

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Hatching Compositions of Low-code Templates

    Get PDF
    Funding Information: Acknowledgements. Partially supported by grant Lisboa-01-0247-Feder-045917. Publisher Copyright: © 2022 ACM.Low-code frameworks strive to simplify and speed-up application development. Native support for the reuse and composition of parameterised coarse-grain components (templates) is essential to achieve these goals. OSTRICH-a rich template language for the OutSystems platform-was designed to simplify the use and creation of such templates. However, without a built-in composition mechanism, OSTRICH templates are hard to create and maintain. This paper presents a template composition mechanism and its typing and instantiation algorithms for model-driven low-code development environments. We evolve OSTRICH to support nested templates and allow the instantiation (hatching) of templates in the definition of other templates. Thus, we observe a significant increase code reuse potential, leading to a safer evolution of applications. The present definition seamlessly extends the existing Out-Systems metamodel with template constructs expressed by model annotations that maintain backward compatibility with the existing language toolchain. We present the metamodel, its annotations, and the corresponding validation and instantiation algorithms. In particular, we introduce a type-based validation procedure that ensures that using a template inside a template produces valid models. The work is validated using the OSTRICH benchmark. Our prototype is an extension of the OutSystems IDE allowing the annotation of models and their use to produce new models. We also analyse which existing OutSystems sample screens templates can be improved by using and sharing nested templates.publishe

    Derivation and consistency checking of models in early software product line engineering

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaSoftware Product Line Engineering (SPLE) should offer the ability to express the derivation of product-specific assets, while checking for their consistency. The derivation of product-specific assets is possible using general-purpose programming languages in combination with techniques such as conditional compilation and code generation. On the other hand, consistency checking can be achieved through consistency rules in the form of architectural and design guidelines, programming conventions and well-formedness rules. Current approaches present four shortcomings: (1) focus on code derivation only, (2) ignore consistency problems between the variability model and other complementary specification models used in early SPLE, (3) force developers to learn new, difficult to master, languages to encode the derivation of assets, and (4) offer no tool support. This dissertation presents solutions that contribute to tackle these four shortcomings. These solutions are integrated in the approach Derivation and Consistency Checking of models in early SPLE (DCC4SPL) and its corresponding tool support. The two main components of our approach are the Variability Modelling Language for Requirements(VML4RE), a domain-specific language and derivation infrastructure, and the Variability Consistency Checker (VCC), a verification technique and tool. We validate DCC4SPL demonstrating that it is appropriate to find inconsistencies in early SPL model-based specifications and to specify the derivation of product-specific models.European Project AMPLE, contract IST-33710; Fundação para a Ciência e Tecnologia - SFRH/BD/46194/2008
    corecore