1,805 research outputs found

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    A case study on the transformation of context-aware domain data onto XML schemas

    Get PDF
    In order to accelerate the development of context-aware applications, it would be convenient to have a smooth path between the context models and the automated services that support these models. This paper discusses how MDA technology (metamodelling and the QVT standard) can support the transformation of high-level models of context-aware services onto the implementation of these services using web services. The total transformation process from context-aware services onto web services involves the following aspects: 1. service signatures, which should be translated onto WSDL definitions; 2. context-aware domain data used as input and output data in service operations, which should be translated onto XML schemas; and 3. service behaviours, which should be used to generate the service implementation. This paper concentrates on the modelling and transformation of the context-aware domain data. The results of this paper are generally applicable to the transformation of elements of any domain-specific language expressed in terms of a metamodel onto XML Schema data

    Requirements traceability in model-driven development: Applying model and transformation conformance

    Get PDF
    The variety of design artifacts (models) produced in a model-driven design process results in an intricate relationship between requirements and the various models. This paper proposes a methodological framework that simplifies management of this relationship, which helps in assessing the quality of models, realizations and transformation specifications. Our framework is a basis for understanding requirements traceability in model-driven development, as well as for the design of tools that support requirements traceability in model-driven development processes. We propose a notion of conformance between application models which reduces the effort needed for assessment activities. We discuss how this notion of conformance can be integrated with model transformations

    Model Driven Mutation Applied to Adaptative Systems Testing

    Get PDF
    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary results on an adaptive web server highlight the difficulty of killing mutants for adaptive systems, and thus the difficulty of generating efficient tests.Comment: IEEE International Conference on Software Testing, Verification and Validation, Mutation Analysis Workshop (Mutation 2011), Berlin : Allemagne (2011

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Developing Unobtrusive Mobile Interactions: a Model Driven Engineering approach

    Full text link
    In Ubiquitous computing environments, people are surrounded by a lot of embedded services. With the inclusion of pervasive technologies such as sensors or GPS receivers, mobile devices turn into an effective communication tool between users and the services embedded in their environment. All these services compete for the attentional resources of the user. Thus, it is essential to consider the degree in which each service intrudes the user mind when services are designed. In order to prevent service behavior from becoming overwhelming, this work, based on Model Driven Engineering foundations, is devoted to develop services according to user needs. In this thesis, we provide a systematic method for the development of mobile services that can be adapted in terms of obtrusiveness. That is, services can be developed to provide their functionality at different obtrusiveness levels by minimizing the duplication of efforts. For the system specification, a modeling language is defined to cope with the particular requirements of the context-aware user interface domain. From this specification, following a sequence of well-defined steps, a software solution is obtained.Gil Pascual, M. (2010). Developing Unobtrusive Mobile Interactions: a Model Driven Engineering approach. http://hdl.handle.net/10251/12745Archivo delegad

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in Science & Engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted. A current problem in the engineering community is the adaptation of desktop applications for mobile technologies. To take advantage of new platform technologies, existing software must evolve. A number of solutions have been proposed to deal with this problem such as redevelopment, which rewrites existing applications, or migration, which moves the existing system to a more flexible environment while retaining the original system data and functionality. A good solution should be to restore the value of the existing software, extracting knowledge and exploiting investment in order to migrate to new software that incorporates the new technologies. On the one hand, traditional reverse engineering techniques can help in the software migration to mobile applications. They are related to the process of analyzing available software with the objective of extracting information and providing high-level views on the underlying code. On the other hand, to achieve interoperability with multiple platforms the migration needs of technical frameworks for information integration and tool interoperability such as the initiative of the Object Management Group (OMG) called Model Driven Architecture (MDA). The outstanding ideas behind MDA are separating the specification of the system functionality from its implementation on specific platforms and managing the software evolution from abstract models to implementations increasing the degree of automation. The objective of this paper is to describe a reengineering process that allow moving existing desktop applications for solving engineering problems of multidisciplinary character to mobile platforms. Our research aims to simplify the creation of applications for mobile platforms by integrating traditional reverse engineering techniques, such static and dynamic analysis, with MDA. We validated our approach by using the open source application platform Eclipse, EMF (Eclipse Modeling Framework), EMP (Eclipse Modeling Project) and the Android platform

    A Framework for Model-Driven Development of Mobile Applications with Context Support

    Get PDF
    Model-driven development (MDD) of software systems has been a serious trend in different application domains over the last 15 years. While technologies, platforms, and architectural paradigms have changed several times since model-driven development processes were first introduced, their applicability and usefulness are discussed every time a new technological trend appears. Looking at the rapid market penetration of smartphones, software engineers are curious about how model-driven development technologies can deal with this novel and emergent domain of software engineering (SE). Indeed, software engineering of mobile applications provides many challenges that model-driven development can address. Model-driven development uses a platform independent model as a crucial artifact. Such a model usually follows a domain-specific modeling language and separates the business concerns from the technical concerns. These platform-independent models can be reused for generating native program code for several mobile software platforms. However, a major drawback of model-driven development is that infrastructure developers must provide a fairly sophisticated model-driven development infrastructure before mobile application developers can create mobile applications in a model-driven way. Hence, the first part of this thesis deals with designing a model-driven development infrastructure for mobile applications. We will follow a rigorous design process comprising a domain analysis, the design of a domain-specific modeling language, and the development of the corresponding model editors. To ensure that the code generators produce high-quality application code and the resulting mobile applications follow a proper architectural design, we will analyze several representative reference applications beforehand. Thus, the reader will get an insight into both the features of mobile applications and the steps that are required to design and implement a model-driven development infrastructure. As a result of the domain analysis and the analysis of the reference applications, we identified context-awareness as a further important feature of mobile applications. Current software engineering tools do not sufficiently support designing and implementing of context-aware mobile applications. Although these tools (e.g., middleware approaches) support the definition and the collection of contextual information, the adaptation of the mobile application must often be implemented by hand at a low abstraction level by the mobile application developers. Thus, the second part of this thesis demonstrates how context-aware mobile applications can be designed more easily by using a model-driven development approach. Techniques such as model transformation and model interpretation are used to adapt mobile applications to different contexts at design time or runtime. Moreover, model analysis and model-based simulation help mobile application developers to evaluate a designed mobile application (i.e., app model) prior to its generation and deployment with respected to certain contexts. We demonstrate the usefulness and applicability of the model-driven development infrastructure we developed by seven case examples. These showcases demonstrate the designing of mobile applications in different domains. We demonstrate the scalability of our model-driven development infrastructure with several performance tests, focusing on the generation time of mobile applications, as well as their runtime performance. Moreover, the usability was successfully evaluated during several hands-on training sessions by real mobile application developers with different skill levels

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in science and engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted [7, 8]
    • …
    corecore