8,698 research outputs found

    Faster subsequence recognition in compressed strings

    Full text link
    Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related to Lempel--Ziv compression. For an SLP-compressed text of length mˉ\bar m, and an uncompressed pattern of length nn, C{\'e}gielski et al. gave an algorithm for local subsequence recognition running in time O(mˉn2logn)O(\bar mn^2 \log n). We improve the running time to O(mˉn1.5)O(\bar mn^{1.5}). Our algorithm can also be used to compute the longest common subsequence between a compressed text and an uncompressed pattern in time O(mˉn1.5)O(\bar mn^{1.5}); the same problem with a compressed pattern is known to be NP-hard

    BPS counting for knots and combinatorics on words

    Get PDF
    We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincar\'e series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mari\~no-Ooguri-Vafa invariants) and discuss their integrality.Comment: 41 pages, 1 figure, a supplementary Mathematica file attache

    Tight Binding Hamiltonians and Quantum Turing Machines

    Full text link
    This paper extends work done to date on quantum computation by associating potentials with different types of computation steps. Quantum Turing machine Hamiltonians, generalized to include potentials, correspond to sums over tight binding Hamiltonians each with a different potential distribution. Which distribution applies is determined by the initial state. An example, which enumerates the integers in succession as binary strings, is analyzed. It is seen that for some initial states the potential distributions have quasicrystalline properties and are similar to a substitution sequence.Comment: 4 pages Latex, 2 postscript figures, submitted to Phys Rev Letter

    On Hilberg's Law and Its Links with Guiraud's Law

    Full text link
    Hilberg (1990) supposed that finite-order excess entropy of a random human text is proportional to the square root of the text length. Assuming that Hilberg's hypothesis is true, we derive Guiraud's law, which states that the number of word types in a text is greater than proportional to the square root of the text length. Our derivation is based on some mathematical conjecture in coding theory and on several experiments suggesting that words can be defined approximately as the nonterminals of the shortest context-free grammar for the text. Such operational definition of words can be applied even to texts deprived of spaces, which do not allow for Mandelbrot's ``intermittent silence'' explanation of Zipf's and Guiraud's laws. In contrast to Mandelbrot's, our model assumes some probabilistic long-memory effects in human narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic

    A Second Step Towards Complexity-Theoretic Analogs of Rice's Theorem

    Get PDF
    Rice's Theorem states that every nontrivial language property of the recursively enumerable sets is undecidable. Borchert and Stephan initiated the search for complexity-theoretic analogs of Rice's Theorem. In particular, they proved that every nontrivial counting property of circuits is UP-hard, and that a number of closely related problems are SPP-hard. The present paper studies whether their UP-hardness result itself can be improved to SPP-hardness. We show that their UP-hardness result cannot be strengthened to SPP-hardness unless unlikely complexity class containments hold. Nonetheless, we prove that every P-constructibly bi-infinite counting property of circuits is SPP-hard. We also raise their general lower bound from unambiguous nondeterminism to constant-ambiguity nondeterminism.Comment: 14 pages. To appear in Theoretical Computer Scienc

    Holomorphic anomaly and matrix models

    Get PDF
    The genus g free energies of matrix models can be promoted to modular invariant, non-holomorphic amplitudes which only depend on the geometry of the classical spectral curve. We show that these non-holomorphic amplitudes satisfy the holomorphic anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa. We derive as well holomorphic anomaly equations for the open string sector. These results provide evidence at all genera for the Dijkgraaf--Vafa conjecture relating matrix models to type B topological strings on certain local Calabi--Yau threefolds.Comment: 23 pages, LaTex, 3 figure
    corecore