143 research outputs found

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    Classifying topoi and finite forcing

    Get PDF
    We show that Robinson's finite forcing, for a theory , is a universal construction in the sense of categorical algebra: it is the satisfaction relation for the universal model in the classifying topos of a certain universal Horn theory defined from . Assuming, without loss of generality, that is axiomatized by universal sentences, we construct, as sheaf subtopoi of , the classifying topoi for (i.e., universal examples of) finitely generic models, existentially closed models, and arbitrary models of (with complemented primitive predicates).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25225/1/0000666.pd

    Homotopic and Geometric Galois Theory (online meeting)

    Get PDF
    In his "Letter to Faltings'', Grothendieck lays the foundation of what will become part of his multi-faceted legacy to arithmetic geometry. This includes the following three branches discussed in the workshop: the arithmetic of Galois covers, the theory of motives and the theory of anabelian Galois representations. Their geometrical paradigms endow similar but complementary arithmetic insights for the study of the absolute Galois group GQ\mathrm{G}_{\mathbb{Q}} of the field of rational numbers that initially crystallized into a functorially group-theoretic unifying approach. Recent years have seen some new enrichments based on modern geometrical constructions - e.g. simplicial homotopy, Tannaka perversity, automorphic forms - that endow some higher considerations and outline new geometric principles. This workshop brought together an international panel of young and senior experts of arithmetic geometry who sketched the future desire paths of homotopic and geometric Galois theory

    Bi-intermediate logics of trees and co-trees

    Full text link
    A bi-Heyting algebra validates the G\"odel-Dummett axiom (p→q)∹(q→p)(p\to q)\vee (q\to p) iff the poset of its prime filters is a disjoint union of co-trees (i.e., order duals of trees). Bi-Heyting algebras of this kind are called bi-G\"odel algebras and form a variety that algebraizes the extension bi\mathsf{bi}-LC\mathsf{LC} of bi-intuitionistic logic axiomatized by the G\"odel-Dummett axiom. In this paper we initiate the study of the lattice Λ(bi\Lambda(\mathsf{bi}-LC)\mathsf{LC}) of extensions of bi\mathsf{bi}-LC\mathsf{LC}. We develop the methods of Jankov-style formulas for bi-G\"odel algebras and use them to prove that there are exactly continuum many extensions of bi\mathsf{bi}-LC\mathsf{LC}. We also show that all these extensions can be uniformly axiomatized by canonical formulas. Our main result is a characterization of the locally tabular extensions of bi\mathsf{bi}-LC\mathsf{LC}. We introduce a sequence of co-trees, called the finite combs, and show that a logic in bi\mathsf{bi}-LC\mathsf{LC} is locally tabular iff it contains at least one of the Jankov formulas associated with the finite combs. It follows that there exists the greatest non-locally tabular extension of bi\mathsf{bi}-LC\mathsf{LC} and consequently, a unique pre-locally tabular extension of bi\mathsf{bi}-LC\mathsf{LC}. These results contrast with the case of the intermediate logic axiomatized by the G\"odel-Dummett axiom, which is known to have only countably many extensions, all of which are locally tabular

    Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates

    Get PDF
    First-order logic is one of the most prominent formalisms in computer science and mathematics. Since there is no algorithm capable of solving its satisfiability problem, first-order logic is said to be undecidable. The classical decision problem is the quest for a delineation between the decidable and the undecidable parts. The results presented in this thesis shed more light on the boundary and open new perspectives on the landscape of known decidable fragments. In the first part we focus on the new concept of separateness of variables and explore its applicability to the classical decision problem and beyond. Two disjoint sets of first-order variables are separated in a given formula if none of its atoms contains variables from both sets. This notion facilitates the definition of decidable extensions of many well-known decidable first-order fragments. We demonstrate this for several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted fragment. Although the extensions exhibit the same expressive power as the respective originals, certain logical properties can be expressed much more succinctly. In two cases the succinctness gap cannot be bounded using elementary functions. This fact already hints at computationally hard satisfiability problems. Indeed, we derive non-elementary lower bounds for the separated fragment, an extension of the Bernays-Schönfinkel-Ramsey fragment (E*A*-prefix sentences). On the semantic level, separateness of quantified variables may lead to weaker dependences than we encounter in general. We investigate this property in the context of model-checking games. The focus of the second part of the thesis is on linear arithmetic with uninterpreted predicates. Two novel decidable fragments are presented, both based on the Bernays-Schönfinkel-Ramsey fragment. On the negative side, we identify several small fragments of the language for which satisfiability is undecidable.Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurĂŒck. Es ist allgemein bekannt, dass das zugehörige ErfĂŒllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst werden kann - man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft ein Schlaglicht auf die prinzipiellen Grenzen der FĂ€higkeiten von Computern im Allgemeinen aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten, die im Laufe der letzten einhundert Jahre untersucht wurden. Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darĂŒber hinaus wird erforscht. Zwei Mengen von Individuenvariablen gelten bezĂŒglich einer gegebenen Formel als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden Mengen vorkommen. Mithilfe dieses leicht verstĂ€ndlichen Begriffs lassen sich viele wohlbekannte entscheidbare Fragmente der Logik erster Stufe zu grĂ¶ĂŸeren Klassen von Formeln erweitern, die dennoch entscheidbar sind. Dieser Ansatz wird fĂŒr neun Fragmente im Detail dargelegt, darunter mehrere PrĂ€fix-Fragmente, das Zwei-Variablen-Fragment und sogenannte "guarded" und " uted" Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in den betrachteten FĂ€llen nicht mit einer erhöhten AusdrucksstĂ€rke einhergeht, können bestimmte ZusammenhĂ€nge mithilfe der erweiterten Syntax deutlich kĂŒrzer formuliert werden. Zumindest in zwei FĂ€llen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschrĂ€nken. Dies liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des ErfĂŒllbarkeitsproblems fĂŒr die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. TatsĂ€chlich wird eine nicht-elementare untere Schranke fĂŒr den entsprechenden Zeitbedarf beim sogenannten separierten Fragment, einer Erweiterung des bekannten Bernays-Schönfinkel-Ramsey-Fragments, abgeleitet. DarĂŒber hinaus wird der Ein uss der Separiertheit von Individuenvariablen auf der semantischen Ebene untersucht, wo AbhĂ€ngigkeiten zwischen quantifizierten Variablen durch deren Separiertheit stark abgeschwĂ€cht werden können. FĂŒr die genauere formale Betrachtung solcher als schwach bezeichneten AbhĂ€ngigkeiten wird auf sogenannte Hintikka-Spiele zurĂŒckgegriffen. Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsproblem fĂŒr die lineare Arithmetik ĂŒber den rationalen Zahlen in Verbindung mit uninterpretierten PrĂ€dikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt, die beide auf dem Bernays-Schönfinkel-Ramsey-Fragment aufbauen. Ferner werden neue negative Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr eingeschrĂ€nkten Teil der Sprache benötigen

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas
    • 

    corecore