31 research outputs found

    Multilevel Modeling, Formal Analysis, and Characterization of Single Event Transients Propagation in Digital Systems

    Get PDF
    RÉSUMÉ La croissance exponentielle du nombre de transistors par puce a apporté des progrès considérables aux performances et fonctionnalités des dispositifs semi-conducteurs avec une miniaturisation des dimensions physiques ainsi qu’une augmentation de vitesse. De nos jours, les appareils électroniques utilisés dans un large éventail d’applications telles que les systèmes de divertissement personnels, l’industrie automobile, les systèmes électroniques médicaux, et le secteur financier ont changé notre façon de vivre. Cependant, des études récentes ont démontré que le rétrécissement permanent de la taille des transistors qui s’approchent des dimensions nanométriques fait surgir des défis majeurs. La réduction de la fiabilité au sens large (c.-à-d., la capacité à fournir la fonction attendue) est l’un d’entre eux. Lorsqu’un système est conçu avec une technologie avancée, on s’attend à ce qu’ il connaît plus de défaillances dans sa durée de vie. De telles défaillances peuvent avoir des conséquences graves allant des pertes financières aux pertes humaines. Les erreurs douces induites par la radiation, qui sont apparues d’abord comme une source de panne plutôt exotique causant des anomalies dans les satellites, sont devenues l’un des problèmes les plus difficiles qui influencent la fiabilité des systèmes microélectroniques modernes, y compris les dispositifs terrestres. Dans le secteur médical par exemple, les erreurs douces ont été responsables de l’échec et du rappel de plusieurs stimulateurs cardiaques implantables. En fonction du transistor affecté lors de la fabrication, le passage d’une particule peut induire des perturbations isolées qui se manifestent comme un basculement du contenu d’une cellule de mémoire (c.-à-d., Single Event Upsets (SEU)) ou un changement temporaire de la sortie (sous forme de bruit) dans la logique combinatoire (c.-à-d., Single Event Transients (SETs)). Les SEU ont été largement étudiés au cours des trois dernières décennies, car ils étaient considérés comme la cause principale des erreurs douces. Néanmoins, des études expérimentales ont montré qu’avec plus de miniaturisation technologique, la contribution des SET au taux d’erreurs douces est remarquable et qu’elle peut même dépasser celui des SEU dans les systèmes à haute fréquence [1], [2]. Afin de minimiser l’impact des erreurs douces, l’effet des SET doit être modélisé, prédit et atténué. Toutefois, malgré les progrès considérables accomplis dans la vérification fonctionnelle des circuits numériques, il y a eu très peu de progrès en matiàre de vérification non-fonctionnelle (par exemple, l’analyse des erreurs douces). Ceci est dû au fait que la modélisation et l’analyse des propriétés non-fonctionnelles des SET pose un grand défi. Cela est lié à la nature aléatoire des défauts et à la difficulté de modéliser la variation de leurs caractéristiques lorsqu’ils se propagent.----------ABSTRACT The exponential growth in the number of transistors per chip brought tremendous progress in the performance and the functionality of semiconductor devices associated with reduced physical dimensions and higher speed. Electronic devices used in a wide range of applications such as personal entertainment systems, automotive industry, medical electronic systems, and financial sector changed the way we live nowadays. However, recent studies reveal that further downscaling of the transistor size at nano-scale technology leads to major challenges. Reliability (i.e., ability to provide intended functionality) is one of them, where a system designed in nano-scale nodes is expected to experience more failures in its lifetime than if it was designed using larger technology node size. Such failures can lead to serious conséquences ranging from financial losses to even loss of human life. Soft errors induced by radiation, which were initially considered as a rather exotic failure mechanism causing anomalies in satellites, have become one of the most challenging issues that impact the reliability of modern microelectronic systems, including devices at terrestrial altitudes. For instance, in the medical industry, soft errors have been responsible of the failure and recall of many implantable cardiac pacemakers. Depending on the affected transistor in the design, a particle strike can manifest as a bit flip in a state element (i.e., Single Event Upset (SEU)) or temporally change the output of a combinational gate (i.e., Single Event Transients (SETs)). Initially, SEUs have been widely studied over the last three decades as they were considered to be the main source of soft errors. However, recent experiments show that with further technology downscaling, the contribution of SETs to the overall soft error rate is remarkable and in high frequency systems, it might exceed that of SEUs [1], [2]. In order to minimize the impact of soft errors, the impact of SETs needs to be modeled, predicted, and mitigated. However, despite considerable progress towards developing efficient methodologies for the functional verification of digital designs, advances in non-functional verification (e.g., soft error analysis) have been lagging. This is due to the fact that the modeling and analysis of non-functional properties related to SETs is very challenging. This can be related to the random nature of these faults and the difficulty of modeling the variation in its characteristics while propagating. Moreover, many details about the design structure and the SETs characteristics may not be available at high abstraction levels. Thus, in high level analysis, many assumptions about the SETs behavior are usually made, which impacts the accuracy of the generated results. Consequently, the lowcost detection of soft errors due to SETs is very challenging and requires more sophisticated techniques

    NOTIFICATION!!!

    Get PDF
    The full content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    Helena

    Get PDF
    Ensemble-based systems are software-intensive systems consisting of large numbers of components which can dynamically form goal-oriented communication groups. The goal of an ensemble is usually achieved through interaction of some components, but the contributing components may simultaneously participate in several collaborations. With standard component-based techniques, such systems can only be described by a complex model specifying all ensembles and participants at the same time. Thus, ensemble-based systems lack a development methodology which particularly addresses the dynamic formation and concurrency of ensembles as well as transparency of participants. This thesis proposes the Helena development methodology. It slices an ensemble-based system in two dimensions: Each kind of ensemble is considered separately. This allows the developer to focus on the relevant parts of the system only and abstract away those parts which are non-essential to the current ensemble. Furthermore, an ensemble itself is not defined solely in terms of participating components, but in terms of roles which components adopt in that ensemble. A role is the logical entity needed to contribute to the ensemble while a component provides the technical functionalities to actually execute a role. By simultaneously adopting several roles, a component can concurrently participate in several ensembles. Helena addresses the particular challenges of ensemble-based systems in the main development phases: The domain of an ensemble-based system is described as an ensemble structure of roles built on top of a component-based platform. Based on the ensemble structure, the goals of ensembles are specified as linear temporal logic formulae. With these goals in mind, the dynamic behavior of the system is designed as a set of role behaviors. To show that the ensemble participants actually achieve the global goals of the ensemble by collaboratively executing the specified behaviors, the Helena model is verified against its goals with the model-checker Spin. For that, we provide a translation of Helena models to Promela, the input language of Spin, which is proven semantically correct for a kernel part of Helena. Finally, we provide the Java framework jHelena which realizes all Helena concepts in Java. By implementing a Helena model with this framework, Helena models can be executed according to the formal Helena semantics. To support all activities of the Helena development methodology, we provide the Helena workbench as a tool for specification and automated verification and code generation. The general applicability of Helena is backed by a case study of a larger software system, the Science Cloud Platform. Helena is able to capture, verify and implement the main characteristics of the system. Looking at Helena from a different angle shows that the Helena idea of roles is also well-suited to realize adaptive systems changing their behavioral modes based on perceptions. We extend the Helena development methodology to adaptive systems and illustrate its applicability at an adaptive robotic search-and-rescue example

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition
    corecore