11,772 research outputs found

    Enriched MU-Calculi Module Checking

    Full text link
    The model checking problem for open systems has been intensively studied in the literature, for both finite-state (module checking) and infinite-state (pushdown module checking) systems, with respect to Ctl and Ctl*. In this paper, we further investigate this problem with respect to the \mu-calculus enriched with nominals and graded modalities (hybrid graded Mu-calculus), in both the finite-state and infinite-state settings. Using an automata-theoretic approach, we show that hybrid graded \mu-calculus module checking is solvable in exponential time, while hybrid graded \mu-calculus pushdown module checking is solvable in double-exponential time. These results are also tight since they match the known lower bounds for Ctl. We also investigate the module checking problem with respect to the hybrid graded \mu-calculus enriched with inverse programs (Fully enriched \mu-calculus): by showing a reduction from the domino problem, we show its undecidability. We conclude with a short overview of the model checking problem for the Fully enriched Mu-calculus and the fragments obtained by dropping at least one of the additional constructs

    Incompleteness of States w.r.t. Traces in Model Checking

    Get PDF
    Cousot and Cousot introduced and studied a general past/future-time specification language, called mu*-calculus, featuring a natural time-symmetric trace-based semantics. The standard state-based semantics of the mu*-calculus is an abstract interpretation of its trace-based semantics, which turns out to be incomplete (i.e., trace-incomplete), even for finite systems. As a consequence, standard state-based model checking of the mu*-calculus is incomplete w.r.t. trace-based model checking. This paper shows that any refinement or abstraction of the domain of sets of states induces a corresponding semantics which is still trace-incomplete for any propositional fragment of the mu*-calculus. This derives from a number of results, one for each incomplete logical/temporal connective of the mu*-calculus, that characterize the structure of models, i.e. transition systems, whose corresponding state-based semantics of the mu*-calculus is trace-complete

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Model Checking the Quantitative mu-Calculus on Linear Hybrid Systems

    Full text link
    We study the model-checking problem for a quantitative extension of the modal mu-calculus on a class of hybrid systems. Qualitative model checking has been proved decidable and implemented for several classes of systems, but this is not the case for quantitative questions that arise naturally in this context. Recently, quantitative formalisms that subsume classical temporal logics and allow the measurement of interesting quantitative phenomena were introduced. We show how a powerful quantitative logic, the quantitative mu-calculus, can be model checked with arbitrary precision on initialised linear hybrid systems. To this end, we develop new techniques for the discretisation of continuous state spaces based on a special class of strategies in model-checking games and present a reduction to a class of counter parity games.Comment: LMCS submissio

    Game-Based Local Model Checking for the Coalgebraic mu-Calculus

    Get PDF
    The coalgebraic mu-calculus is a generic framework for fixpoint logics with varying branching types that subsumes, besides the standard relational mu-calculus, such diverse logics as the graded mu-calculus, the monotone mu-calculus, the probabilistic mu-calculus, and the alternating-time mu-calculus. In the present work, we give a local model checking algorithm for the coalgebraic mu-calculus using a coalgebraic variant of parity games that runs, under mild assumptions on the complexity of the so-called one-step satisfaction problem, in time p^k where p is a polynomial in the formula and model size and where k is the alternation depth of the formula. We show moreover that under the same assumptions, the model checking problem is in both NP and coNP, improving the complexity in all mentioned non-relational cases. If one-step satisfaction can be solved by means of small finite games, we moreover obtain standard parity games, ensuring quasi-polynomial run time. This applies in particular to the monotone mu-calculus, the alternating-time mu-calculus, and the graded mu-calculus with grades coded in unary
    • …
    corecore