1,615 research outputs found

    A probabilistic extension of UML statecharts: specification and verification

    Get PDF
    This paper is the extended technical report that corresponds to a published paper [14]. This paper introduces means to specify system randomness within UML statecharts, and to verify probabilistic temporal properties over such enhanced statecharts which we call probabilistic UML statecharts. To achieve this, we develop a general recipe to extend a statechart semantics with discrete probability distributions, resulting in Markov decision processes as semantic models. We apply this recipe to the requirements-level UML semantics of [8]. Properties of interest for probabilistic statecharts are expressed in PCTL, a probabilistic variant of CTL for processes that exhibit both non-determinism and probabilities. Verification is performed using the model checker Prism. A model checking example shows the feasibility of the suggested approach

    Extensions of statecharts : with probability, time, and stochastic timing

    Get PDF
    Statecharts are a graphical language to describe the behaviour of a system. For example, in the UML, a statechart can be used to describe the behaviour of an object. Model checking is a method to verify automatically whether a system satisfies some desired property.\ud The goal of this thesis is: To use statecharts to render model checking more widely usable.\ud We show this in two respects: For real-time statecharts, we provide a property language that fits nicely with the features of statecharts. For probabilistic model checking, we provide an extension of statecharts as input language

    Auto-coding UML statecharts for flight software

    Get PDF
    Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Handtranslating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM)

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    Synthesis of behavioral models from scenarios

    No full text

    Timing diagrams add Requirements Engineering capability to Event-B Formal Development

    No full text
    Event-B is a language for the formal development of reactive systems. At present the RODIN toolkit [15] for Event-B is used for modeling requirements, specifying refinements and doing verification. In order to extend graphical requirements modeling capability into the real-time domain, where timing constraints are essential, we propose a Timing diagram (TD) [13] notation for Event-B. The UML 2.0 based notation provides an intuitive graphical specification capability for timing constraints and causal dependencies between system events. A translation scheme to Event-B is proposed and presented. Support for model refinement is provided. A partial case study is used to demonstrate the translation in practice

    Statechart Slicing

    Get PDF
    The paper discusses how to reduce a statechart model by slicing. We start with the discussion of control dependencies and data dependencies in statecharts. The and-or dependence graph is introduced to represent control and data dependencies for statecharts. We show how to slice statecharts by using this dependence graph. Our slicing approach helps systems analysts and system designers in understanding system specifications, maintaining software systems, and reusing parts of systems models
    • ā€¦
    corecore