340 research outputs found

    Modal mu-calculi

    Get PDF

    The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

    Full text link
    It is known that the alternation hierarchy of least and greatest fixpoint operators in the mu-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full mu-calculus. Our current understanding of when and why the mu-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the mu-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure's graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Disjunctive form and the modal μ\mu alternation hierarchy

    Full text link
    This paper studies the relationship between disjunctive form, a syntactic normal form for the modal mu calculus, and the alternation hierarchy. First it shows that all disjunctive formulas which have equivalent tableau have the same syntactic alternation depth. However, tableau equivalence only preserves alternation depth for the disjunctive fragment: there are disjunctive formulas with arbitrarily high alternation depth that are tableau equivalent to alternation-free non-disjunctive formulas. Conversely, there are non-disjunctive formulas of arbitrarily high alternation depth that are tableau equivalent to disjunctive formulas without alternations. This answers negatively the so far open question of whether disjunctive form preserves alternation depth. The classes of formulas studied here illustrate a previously undocumented type of avoidable syntactic complexity which may contribute to our understanding of why deciding the alternation hierarchy is still an open problem.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    On Modal {\mu}-Calculus over Finite Graphs with Bounded Strongly Connected Components

    Full text link
    For every positive integer k we consider the class SCCk of all finite graphs whose strongly connected components have size at most k. We show that for every k, the Modal mu-Calculus fixpoint hierarchy on SCCk collapses to the level Delta2, but not to Comp(Sigma1,Pi1) (compositions of formulas of level Sigma1 and Pi1). This contrasts with the class of all graphs, where Delta2=Comp(Sigma1,Pi1)

    Succinct Graph Representations of ?-Calculus Formulas

    Get PDF
    Many algorithmic results on the modal mu-calculus use representations of formulas such as alternating tree automata or hierarchical equation systems. At closer inspection, these results are not always optimal, since the exact relation between the formula and its representation is not clearly understood. In particular, there has been confusion about the definition of the fundamental notion of the size of a mu-calculus formula. We propose the notion of a parity formula as a natural way of representing a mu-calculus formula, and as a yardstick for measuring its complexity. We discuss the close connection of this concept with alternating tree automata, hierarchical equation systems and parity games. We show that well-known size measures for mu-calculus formulas correspond to a parity formula representation of the formula using its syntax tree, subformula graph or closure graph, respectively. Building on work by Bruse, Friedmann & Lange we argue that for optimal complexity results one needs to work with the closure graph, and thus define the size of a formula in terms of its Fischer-Ladner closure. As a new observation, we show that the common assumption of a formula being clean, that is, with every variable bound in at most one subformula, incurs an exponential blow-up of the size of the closure. To realise the optimal upper complexity bound of model checking for all formulas, our main result is to provide a construction of a parity formula that (a) is based on the closure graph of a given formula, (b) preserves the alternation-depth but (c) does not assume the input formula to be clean

    Permutation Games for the Weakly Aconjunctive μ\mu-Calculus

    Full text link
    We introduce a natural notion of limit-deterministic parity automata and present a method that uses such automata to construct satisfiability games for the weakly aconjunctive fragment of the μ\mu-calculus. To this end we devise a method that determinizes limit-deterministic parity automata of size nn with kk priorities through limit-deterministic B\"uchi automata to deterministic parity automata of size O((nk)!)\mathcal{O}((nk)!) and with O(nk)\mathcal{O}(nk) priorities. The construction relies on limit-determinism to avoid the full complexity of the Safra/Piterman-construction by using partial permutations of states in place of Safra-Trees. By showing that limit-deterministic parity automata can be used to recognize unsuccessful branches in pre-tableaux for the weakly aconjunctive μ\mu-calculus, we obtain satisfiability games of size O((nk)!)\mathcal{O}((nk)!) with O(nk)\mathcal{O}(nk) priorities for weakly aconjunctive input formulas of size nn and alternation-depth kk. A prototypical implementation that employs a tableau-based global caching algorithm to solve these games on-the-fly shows promising initial results
    corecore