1,764 research outputs found

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    Automated Certification for Compliant Cloud-based Business Processes

    Get PDF
    A key problem in the deployment oflarge-scale, reliable cloud computingconcerns the difficulty to certify thecompliance of business processes operatingin the cloud. Standard auditprocedures such as SAS-70 and SAS-117 are hard to conduct for cloudbasedprocesses. The paper proposesa novel approach to certify the complianceof business processes with regulatoryrequirements. The approach translatesprocess models into their correspondingPetri net representationsand checks them against requirementsalso expressed in this formalism. Beingbased on Petri nets, the approach provideswell-founded evidence on adherenceand, in case of noncompliance, indicatesthe possible vulnerabilities

    Behavioral analysis of scientific workflows with semantic information

    Get PDF
    The recent development in scientific computing related areas has shown an increasing interest in scientific workflows because of their abilities to solve complex challenges. Problems and challenges that were too heavy or time-consuming can be solved now in a more efficient manner. Scientific workflows have been progressively improved by means of the introduction of new paradigms and technologies, being the semantic area one of the most promising ones. This paper focuses on the addition of semantic Web techniques to the scientific workflow area, which facilitates the integration of network-based solutions. On the other hand, a model checking technique to study the workflow behavior prior to its execution is also described. Using the Unary RDF annotated Petri net formalism (U-RDF-PN), scientific workflows can be improved by adding semantic annotations related to the task descriptions and workflow evolution. This technique can be applied using a complete environment for the model checking of this kind of workflows that is also depicted in this work. Finally, the proposed methodology is exemplified by its application to a couple of known scientific workflows: the First Provenance Challenge and the InterScan protein analysis workflow

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Verslo procesų prognozavimo ir imitavimo taikant sisteminių įvykių žurnalų analizės metodus tyrimas

    Get PDF
    Business process (BP) analysis is one of the core activities in organisations that lead to improvements and achievement of a competitive edge. BP modelling and simulation are one of the most widely applied methods for analysing and improving BPs. The analysis requires to model BP and to apply analysis techniques to the models to answer queries leading to improvements. The input of the analysis process is BP models. The models can be in the form of BP models using industry-accepted BP modelling languages, mathematical models, simulation models and others. The model creation is the most important part of the BP analysis, and it is both time-consuming and costly activity. Nowadays most of the data generated in the organisations are electronic. Therefore, the re-use of such data can improve the results of the analysis. Thus, the main goal of the thesis is to improve BP analysis and simulation by proposing a method to discover a BP model from an event log and automate simulation model generation. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter discusses BP analysis methods. In addition, the process mining research area is presented, the techniques for automated model discovery, model validation and execution prediction are analysed. The second part of the chapter investigates the area of BP simula-tion. The second chapter of the dissertation presents a novel method which automatically discovers Bayesian Belief Network from an event log and, furthermore, automatically generates BP simulation model. The discovery of the Bayesian Belief Network consists of three steps: the discovery of a directed acyclic graph, generation of conditional probability tables and their combination. The BP simulation model is generated from the discovered directed acyclic graph and uses the belief network inferences during the simulation to infer the execution of the BP and to generate activity data dur-ing the simulation. The third chapter presents the experimental research of the proposed network and discusses the validity of the research and experiments. The experiments use selected logs that exhibit a wide array of behaviour. The experiments are performed in order to test the discovery of the graphs, the inference of the current process instance execution probability, the predic-tion of the future execution of the process instances and the correctness of the simulation. The results of the dissertation were published in 9 scientific publica-tions, 2 of which were in reviewed scientific journals indexed in Clarivate Analytics Science Citation Index

    Value-Oriented Design of Service Coordination Processes: Correctness and Trust

    Get PDF
    The rapid growth of service coordination languages creates a need for methodological support for coordination design. Coordination design differs from workflow design because a coordination process connects different businesses that can each make design decisions independently from the others, and no business is interested in supporting the business processes of others. In multi-business cooperative design, design decisions are only supported by all businesses if they contribute to the profitability of each participating business. So in order to make coordination design decisions supported by all participating businesses, requirements for a coordination process should be derived from the business model that makes the coordination profitable for each participating business. We claim that this business model is essentially a model of intended value exchanges. We model the intended value exchanges of a business model as e3 -value value models and coordination processes as UML activity diagrams. The contribution of the paper is then to propose and discuss a criterion according to which a service coordination process must be correct with respect to a value exchange model. This correctness is necessary to gain business support for the process. Finally, we discuss methodological consequences of this approach for service coordination process design

    Modeling and Checking Business Process Compliance Rules in the Financial Sector

    Get PDF
    Assuring compliance of business processes with legal and internal regulations is crucial for financial institutions, as non-compliance may lead to severe financial and juridical penalties. To ensure business process compliance, process models have been established as a widely accepted basis for the design, documentation and control of the implementation of business process rules. Accordingly, in this paper, we introduce a semi-automatic business process compliance checking approach based on process models and related models. It relies on graph-based pattern matching, which makes it possible in contrast to existing approaches to define and check any possible type of business rule in any possible type of business process model or even other type of model. The approach is embedded in a design science research methodology
    corecore