44,073 research outputs found

    Finding Streams in Knowledge Graphs to Support Fact Checking

    Full text link
    The volume and velocity of information that gets generated online limits current journalistic practices to fact-check claims at the same rate. Computational approaches for fact checking may be the key to help mitigate the risks of massive misinformation spread. Such approaches can be designed to not only be scalable and effective at assessing veracity of dubious claims, but also to boost a human fact checker's productivity by surfacing relevant facts and patterns to aid their analysis. To this end, we present a novel, unsupervised network-flow based approach to determine the truthfulness of a statement of fact expressed in the form of a (subject, predicate, object) triple. We view a knowledge graph of background information about real-world entities as a flow network, and knowledge as a fluid, abstract commodity. We show that computational fact checking of such a triple then amounts to finding a "knowledge stream" that emanates from the subject node and flows toward the object node through paths connecting them. Evaluation on a range of real-world and hand-crafted datasets of facts related to entertainment, business, sports, geography and more reveals that this network-flow model can be very effective in discerning true statements from false ones, outperforming existing algorithms on many test cases. Moreover, the model is expressive in its ability to automatically discover several useful path patterns and surface relevant facts that may help a human fact checker corroborate or refute a claim.Comment: Extended version of the paper in proceedings of ICDM 201

    Reachability Analysis of Time Basic Petri Nets: a Time Coverage Approach

    Full text link
    We introduce a technique for reachability analysis of Time-Basic (TB) Petri nets, a powerful formalism for real- time systems where time constraints are expressed as intervals, representing possible transition firing times, whose bounds are functions of marking's time description. The technique consists of building a symbolic reachability graph relying on a sort of time coverage, and overcomes the limitations of the only available analyzer for TB nets, based in turn on a time-bounded inspection of a (possibly infinite) reachability-tree. The graph construction algorithm has been automated by a tool-set, briefly described in the paper together with its main functionality and analysis capability. A running example is used throughout the paper to sketch the symbolic graph construction. A use case describing a small real system - that the running example is an excerpt from - has been employed to benchmark the technique and the tool-set. The main outcome of this test are also presented in the paper. Ongoing work, in the perspective of integrating with a model-checking engine, is shortly discussed.Comment: 8 pages, submitted to conference for publicatio

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Petri Games: Synthesis of Distributed Systems with Causal Memory

    Full text link
    We present a new multiplayer game model for the interaction and the flow of information in a distributed system. The players are tokens on a Petri net. As long as the players move in independent parts of the net, they do not know of each other; when they synchronize at a joint transition, each player gets informed of the causal history of the other player. We show that for Petri games with a single environment player and an arbitrary bounded number of system players, deciding the existence of a safety strategy for the system players is EXPTIME-complete.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Heuristic Approaches for Generating Local Process Models through Log Projections

    Full text link
    Local Process Model (LPM) discovery is focused on the mining of a set of process models where each model describes the behavior represented in the event log only partially, i.e. subsets of possible events are taken into account to create so-called local process models. Often such smaller models provide valuable insights into the behavior of the process, especially when no adequate and comprehensible single overall process model exists that is able to describe the traces of the process from start to end. The practical application of LPM discovery is however hindered by computational issues in the case of logs with many activities (problems may already occur when there are more than 17 unique activities). In this paper, we explore three heuristics to discover subsets of activities that lead to useful log projections with the goal of speeding up LPM discovery considerably while still finding high-quality LPMs. We found that a Markov clustering approach to create projection sets results in the largest improvement of execution time, with discovered LPMs still being better than with the use of randomly generated activity sets of the same size. Another heuristic, based on log entropy, yields a more moderate speedup, but enables the discovery of higher quality LPMs. The third heuristic, based on the relative information gain, shows unstable performance: for some data sets the speedup and LPM quality are higher than with the log entropy based method, while for other data sets there is no speedup at all.Comment: paper accepted and to appear in the proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), special session on Process Mining, part of the Symposium Series on Computational Intelligence (SSCI
    corecore