833 research outputs found

    Layout regularity metric as a fast indicator of process variations

    Get PDF
    Integrated circuits design faces increasing challenge as we scale down due to the increase of the effect of sensitivity to process variations. Systematic variations induced by different steps in the lithography process affect both parametric and functional yields of the designs. These variations are known, themselves, to be affected by layout topologies. Design for Manufacturability (DFM) aims at defining techniques that mitigate variations and improve yield. Layout regularity is one of the trending techniques suggested by DFM to mitigate process variations effect. There are several solutions to create regular designs, like restricted design rules and regular fabrics. These regular solutions raised the need for a regularity metric. Metrics in literature are insufficient for different reasons; either because they are qualitative or computationally intensive. Furthermore, there is no study relating either lithography or electrical variations to layout regularity. In this work, layout regularity is studied in details and a new geometrical-based layout regularity metric is derived. This metric is verified against lithographic simulations and shows good correlation. Calculation of the metric takes only few minutes on 1mm x 1mm design, which is considered fast compared to the time taken by simulations. This makes it a good candidate for pre-processing the layout data and selecting certain areas of interest for lithographic simulations for faster throughput. The layout regularity metric is also compared against a model that measures electrical variations due to systematic lithographic variations. The validity of using the regularity metric to flag circuits that have high variability using the developed electrical variations model is shown. The regularity metric results compared to the electrical variability model results show matching percentage that can reach 80%, which means that this metric can be used as a fast indicator of designs more susceptible to lithography and hence electrical variations

    Critical area driven dummy fill insertion to improve manufacturing yield

    Full text link

    Experimental development of liquid crystal spatial light modulator based coherent optical correlators

    Get PDF

    High Efficiency Silicon Photonic Interconnects

    Get PDF
    Silicon photonic has provided an opportunity to enhance future processor speed by replacing copper interconnects with an on chip optical network. Although photonics are supposed to be efficient in terms of power consumption, speed, and bandwidth, the existing silicon photonic technologies involve problems limiting their efficiency. Examples of limitations to efficiency are transmission loss, coupling loss, modulation speed limited by electro-optical effect, large amount of energy required for thermal control of devices, and the bandwidth limit of existing optical routers. The objective of this dissertation is to investigate novel materials and methods to enhance the efficiency of silicon photonic devices. The first part of this dissertation covers the background, theory and design of on chip optical interconnects, specifically silicon photonic interconnects. The second part describes the work done to build a 300mm silicon photonic library, including its process flow, comprised of basic elements like electro-optical modulators, germanium detectors, Wavelength Division Multiplexing (WDM) interconnects, and a high efficiency grating coupler. The third part shows the works done to increase the efficiency of silicon photonic modulators, unitizing the χ(3) nonlinear effect of silicon nanocrystals to make DC Kerr effect electro-optical modulator, combining silicon with lithium niobate to make χ(2) electro-optical modulators on silicon, and increasing the efficiency of thermal control by incorporating micro-oven structures in electro-optical modulators. The fourth part introduces work done on dynamic optical interconnects including a broadband optical router, single photon level adiabatic wavelength conversion, and optical signal delay. The final part summarizes the work and talks about future development
    • …
    corecore